scispace - formally typeset
Search or ask a question
Author

A. A. Khan

Bio: A. A. Khan is an academic researcher from Delft University of Technology. The author has contributed to research in topics: Fluidized bed combustion & Fluidized bed. The author has an hindex of 6, co-authored 6 publications receiving 984 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present the major issues concerned with biomass combustion with special reference to the small scale fluidized bed systems (small to pilot scale). Problems have been identified, mechanisms explained and solutions have been indicated.

1,012 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated combustion of two biomass fuels: demolition wood (DW) and pepper plant residue (PPR) from an emission viewpoint in a 20kWth fluidized bubbling bed reactor and a 1.5MWth test boiler.
Abstract: Combustion of two biomass fuels: demolition wood (DW) and pepper plant residue (PPR), was investigated from an emission viewpoint in a 20 kWth fluidized bubbling bed reactor and a 1 MWth fluidized bubbling bed test boiler. Fluidization velocity and boiler output were varied in the larger facility whereas they were kept constant in the smaller reactor. Traditional flue gases were analyzed. In addition, impactor measurements were carried out to determine the mass flow of the finest fly ash and toxic elements. These measurements were compared with EU emission directives for biomass co-incineration. It was possible to combust DW without operational problems. However, the DW was contaminated with lead, which tended to get strongly enriched in the fine fly ash. Pb tends to be adsorbed on the measurement line surfaces stronger than many other toxic elements and therefore proved difficult to collect and measure. Enrichment of Pb in the fine fly ash can be weakened by co-firing DW with PPR. Increasing the share of PPR up to 50% markedly reduces the toxic metal concentration in the finest fly ash. This, however, leads to increased mass flow of fine fly ash and increases the potential risks of operational problems such as bed agglomeration and fouling.

45 citations

Journal ArticleDOI
TL;DR: In this paper, a model of a 1 MWth atmospheric bubbling fluidized combustor burning waste wood fuel (feeding) is presented, which incorporates both the solid and gas phases, and a particle size distribution model is included to calculate elutriation losses of fine char particles.
Abstract: A model of a 1 MWth atmospheric bubbling fluidized combustor burning waste wood fuel (feeding) is presented. The model incorporates both the solid and gas phases. The bed is assumed to consist of two phases, of which the emulsion phase takes both gas and solids into account, while the bubble phase consists only of gas. A wide size distribution of biomass feed, representative of the actual boiler feed, has been assumed. The model calculates the gas composition, velocities, and other important hydrodynamic parameters in both the emulsion and bubble phase. A particle size distribution model is included to calculate elutriation losses of fine char particles. This approach is novel in the sense that a population balance for fine particle class is derived, using the well-known mass balance principles, and a coupled discretized population balance equation, valid for the whole particle size range, is presented. The model takes into account devolatilization, fragmentation, and attrition of the solid phase along with gaseous profiles. It includes nine components for which differential equations have been derived and solved to calculate species concentration at any point along the bed height. In total, 20 particle size classes have been considered, 10 of which are considered as feed and the rest as fine classes. The model aims to assess the effect of different parameters on boiler performance and gaseous emissions. A sensitivity analysis of the gaseous emission profiles with respect to different variables and parameters defining different submodels has been carried out. A homogeneous NOx model has been included with individual kinetic parameters for relevant species. It has been found that gas hydrodynamics play a significant role, and the system can be optimized using these parameters.

15 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a general summary of the properties of pyrolytic products and their analysis methods is given, as well as a review of the parameters that affect the process and a summary of current state of the art.
Abstract: Pyrolysis is one of the thermochemical technologies for converting biomass into energy and chemical products consisting of liquid bio-oil, solid biochar, and pyrolytic gas. Depending on the heating rate and residence time, biomass pyrolysis can be divided into three main categories slow (conventional), fast and flash pyrolysis mainly aiming at maximising either the bio-oil or biochar yields. Synthesis gas or hydrogen-rich gas can also be the target of biomass pyrolysis. Maximised gas rates can be achieved through the catalytic pyrolysis process, which is now increasingly being developed. Biomass pyrolysis generally follows a three-step mechanism comprising of dehydration, primary and secondary reactions. Dehydrogenation, depolymerisation, and fragmentation are the main competitive reactions during the primary decomposition of biomass. A number of parameters affect the biomass pyrolysis process, yields and properties of products. These include the biomass type, biomass pretreatment (physical, chemical, and biological), reaction atmosphere, temperature, heating rate and vapour residence time. This manuscript gives a general summary of the properties of the pyrolytic products and their analysis methods. Also provided are a review of the parameters that affect biomass pyrolysis and a summary of the state of industrial pyrolysis technologies.

1,379 citations

Journal ArticleDOI
TL;DR: In this paper, several aspects which are associated with burning biomass in boilers have been investigated such as composition of biomass, estimating the higher heating value of biomass and comparison between biomass and other fuels.
Abstract: Currently, fossil fuels such as oil, coal and natural gas represent the prime energy sources in the world. However, it is anticipated that these sources of energy will deplete within the next 40–50 years. Moreover, the expected environmental damages such as the global warming, acid rain and urban smog due to the production of emissions from these sources have tempted the world to try to reduce carbon emissions by 80% and shift towards utilizing a variety of renewable energy resources (RES) which are less environmentally harmful such as solar, wind, biomass etc. in a sustainable way. Biomass is one of the earliest sources of energy with very specific properties. In this review, several aspects which are associated with burning biomass in boilers have been investigated such as composition of biomass, estimating the higher heating value of biomass, comparison between biomass and other fuels, combustion of biomass, co-firing of biomass and coal, impacts of biomass, economic and social analysis of biomass, transportation of biomass, densification of biomass, problems of biomass and future of biomass. It has been found that utilizing biomass in boilers offers many economical, social and environmental benefits such as financial net saving, conservation of fossil fuel resources, job opportunities creation and CO 2 and NO x emissions reduction. However, care should be taken to other environmental impacts of biomass such as land and water resources, soil erosion, loss of biodiversity and deforestation. Fouling, marketing, low heating value, storage and collections and handling are all associated problems when burning biomass in boilers. The future of biomass in boilers depends upon the development of the markets for fossil fuels and on policy decisions regarding the biomass market.

1,293 citations

Journal ArticleDOI
TL;DR: In this paper, an updated review on the fundamentals and reaction mechanisms of the slow-pyrolysis and hydrothermal carbonization (HTC) processes, identifies research gaps, and summarizes the physicochemical characteristics of chars for different applications in the industry.
Abstract: Slow-pyrolysis of biomass for the production of biochar, a stable carbon-rich solid by-product, has gained considerable interest due to its proven role and application in the multidisciplinary areas of science and engineering. An alternative to slow-pyrolysis is a relatively new process called hydrothermal carbonization (HTC) of biomass, where the biomass is treated with hot compressed water instead of drying, has shown promising results. The HTC process offers several advantages over conventional dry-thermal pre-treatments like slow-pyrolysis in terms of improvements in the process performances and economic efficiency, especially its ability to process wet feedstock without pre-drying requirement. Char produced from both the processes exhibits significantly different physiochemical properties that affect their potential applications, which includes but is not limited to carbon sequestration, soil amelioration, bioenergy production, and wastewater pollution remediation. This paper provides an updated review on the fundamentals and reaction mechanisms of the slow-pyrolysis and HTC processes, identifies research gaps, and summarizes the physicochemical characteristics of chars for different applications in the industry. The literature reviewed in this study suggests that hydrochar (HTC char) is a valuable resource and is superior to biochar in certain ways. For example, it contains a reduced alkali and alkaline earth and heavy metal content, and an increased higher heating value compared to the biochar produced at the same operating process temperature. However, its effective utilization would require further experimental research and investigations in terms of feeding of biomass against pressure; effects and relationships among feedstocks compositions, hydrochar characteristics and process conditions; advancement in the production technique(s) for improvement in the physicochemical behavior of hydrochar; and development of a diverse range of processing options to produce hydrochar with characteristics required for various industry applications.

1,061 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the major issues concerned with biomass combustion with special reference to the small scale fluidized bed systems (small to pilot scale). Problems have been identified, mechanisms explained and solutions have been indicated.

1,012 citations

Journal ArticleDOI
01 Apr 2012-Fuel
TL;DR: An extended overview of the organic and inorganic phase composition of biomass was conducted in this article, where reference peer-reviewed data and own investigations for various minor organic components and minerals, and modes of element occurrence identified in biomass were also applied and organized to describe the biomass systematically.

778 citations