scispace - formally typeset
Search or ask a question
Author

A. A. Maradudin

Other affiliations: Max Planck Society
Bio: A. A. Maradudin is an academic researcher from University of California, Irvine. The author has contributed to research in topics: Scattering & Light scattering. The author has an hindex of 48, co-authored 251 publications receiving 8324 citations. Previous affiliations of A. A. Maradudin include Max Planck Society.


Papers
More filters
Journal ArticleDOI
TL;DR: By the use of a position-dependent dielectric constant and the plane-wave method, the photonic band structure for electromagnetic waves in a structure consisting of a periodic array of parallel dielectrics rods of circular cross section, whose intersections with a perpendicular plane form a triangular lattice is calculated.
Abstract: By the use of a position-dependent dielectric constant and the plane-wave method, we have calculated the photonic band structure for electromagnetic waves in a structure consisting of a periodic array of parallel dielectric rods of circular cross section, whose intersections with a perpendicular plane form a triangular lattice. The rods are embedded in a background medium with a different dielectric constant. The electromagnetic waves are assumed to propagate in a plane perpendicular to the rods, and two polarizations of the waves are considered. Absolute gaps in the resulting band structures are found for waves of both polarizations, and the dependence of the widths of these gaps on the ratio of the dielectric constants of the rods and of the background, and on the fraction of the total volume occupied by the rods, is investigated.

616 citations

Journal ArticleDOI
TL;DR: In this article, the authors used Green's second integral theorem to obtain exact expressions for the scattered electromagnetic field produced by a p- or s-polarized beam of finite width incident from the vacuum side onto a random grating whose grooves are perpendicular to the plane of incidence.

391 citations

Journal ArticleDOI
TL;DR: In this article, the static ground state energy of a two-dimensional Wigner crystal has been obtained for each of the five 2D Bravais lattices, and the dispersion curves for wave vectors along the symmetry directions in the first Brillouin zone for the hexagonal lattice are calculated.
Abstract: The static ground-state energy of a two-dimensional Wigner crystal has been obtained for each of the five two-dimensional Bravais lattices. At constant electron number density the hexagonal lattice has the lowest energy. Phonon dispersion curves have been calculated for wave vectors along the symmetry directions in the first Brillouin zone for the hexagonal lattice. In the long-wavelength limit one of the two branches of the dispersion relation vanishes with vanishing two-dimensional wave vector $\stackrel{\ensuremath{\rightarrow}}{\mathrm{q}}$ as $q$, the second as ${q}^{\frac{1}{2}}$. The coefficient of $q$ in the former branch is pure imaginary for certain directions of propagation in the square lattice, implying a dynamical instability of this lattice; the hexagonal lattice is stable. The vibrational zero-point energy and low-temperature thermodynamic functions have been obtained for the hexagonal lattice. The dielectric susceptibility tensor of a two-dimensional Wigner crystal ${\ensuremath{\chi}}_{\ensuremath{\alpha}\ensuremath{\beta}}(\stackrel{\ensuremath{\rightarrow}}{\mathrm{q}})$ has been determined in the long-wavelength limit, in the presence of a static magnetic field perpendicular to the crystal, and the result has been used to obtain the dispersion relation for plasma oscillations in the electron crystal.

386 citations

Journal ArticleDOI
TL;DR: In this paper, a theoretical description of the scattering and absorption of electromagnetic radiation induced by roughness on the surface of a semi-infinite medium is presented, where the authors use scattering theory applied to the classical Maxwell equations.
Abstract: In this paper, we present a theoretical description of the scattering and absorption of electromagnetic radiation induced by roughness on the surface of a semi-infinite medium. We approach the problem by the use of scattering theory applied to the classical Maxwell equations. We obtain formulas for the roughness-induced scattering from the surface of an isotropic dielectric for both $s$- and $p$-polarized waves incident on the surface at a general angle of incidence. When the real part of the dielectric constant of the material is negative and its imaginary part small (as in a simple nearly-free-electron metal), we extract from the expressions for the total absorption rate that portion which describes roughness-induced absorption by surface polaritons (surface plasmons). We compare our results with those recently published by Ritchie and collaborators for the case of normal incidence, and we present a series of numerical studies of the roughness-induced scattering and absorption rates in aluminum.

348 citations

Journal ArticleDOI
TL;DR: A microscopic theory of the electric field induced infrared absorption by crystals of the diamond structure is presented in this paper, together with a determination of the modifications in the first-order Raman spectra of such crystals induced by externally applied electric fields and stresses.

215 citations


Cited by
More filters
Book
15 May 2007
TL;DR: In this paper, the authors discuss the role of surface plasmon polaritons at metal/insulator interfaces and their application in the propagation of surfaceplasmon waveguides.
Abstract: Fundamentals of Plasmonics.- Electromagnetics of Metals.- Surface Plasmon Polaritons at Metal / Insulator Interfaces.- Excitation of Surface Plasmon Polaritons at Planar Interfaces.- Imaging Surface Plasmon Polariton Propagation.- Localized Surface Plasmons.- Electromagnetic Surface Modes at Low Frequencies.- Applications.- Plasmon Waveguides.- Transmission of Radiation Through Apertures and Films.- Enhancement of Emissive Processes and Nonlinearities.- Spectroscopy and Sensing.- Metamaterials and Imaging with Surface Plasmon Polaritons.- Concluding Remarks.

7,238 citations

Journal ArticleDOI
TL;DR: In this paper, a new type of metallic structure has been developed that is characterized by having high surface impedance, which is analogous to a corrugated metal surface in which the corrugations have been folded up into lumped-circuit elements and distributed in a two-dimensional lattice.
Abstract: A new type of metallic electromagnetic structure has been developed that is characterized by having high surface impedance. Although it is made of continuous metal, and conducts dc currents, it does not conduct ac currents within a forbidden frequency band. Unlike normal conductors, this new surface does not support propagating surface waves, and its image currents are not phase reversed. The geometry is analogous to a corrugated metal surface in which the corrugations have been folded up into lumped-circuit elements, and distributed in a two-dimensional lattice. The surface can be described using solid-state band theory concepts, even though the periodicity is much less than the free-space wavelength. This unique material is applicable to a variety of electromagnetic problems, including new kinds of low-profile antennas.

4,264 citations

Journal ArticleDOI
TL;DR: In this article, the integropartial differential equations of the linear theory of nonlocal elasticity are reduced to singular partial differential equations for a special class of physically admissible kernels.
Abstract: Integropartial differential equations of the linear theory of nonlocal elasticity are reduced to singular partial differential equations for a special class of physically admissible kernels. Solutions are obtained for the screw dislocation and surface waves. Experimental observations and atomic lattice dynamics appear to support the theoretical results very nicely.

3,929 citations

Journal ArticleDOI
TL;DR: Variations in reaction conditions and crystallographic analysis of gold nanorod have led to insight into the growth mechanism of these materials, and optical applications in sensing and imaging, which take advantage of the visible light absorption and scattering properties of the nanorods are discussed.
Abstract: This feature article highlights work from the authors' laboratories on the synthesis, assembly, reactivity, and optical applications of metallic nanoparticles of nonspherical shape, especially nanorods. The synthesis is a seed-mediated growth procedure, in which metal salts are reduced initially with a strong reducing agent, in water, to produce ∼4 nm seed particles. Subsequent reduction of more metal salt with a weak reducing agent, in the presence of structure-directing additives, leads to the controlled formation of nanorods of specified aspect ratio and can also yield other shapes of nanoparticles (stars, tetrapods, blocks, cubes, etc.). Variations in reaction conditions and crystallographic analysis of gold nanorods have led to insight into the growth mechanism of these materials. Assembly of nanorods can be driven by simple evaporation from solution or by rational design with molecular-scale connectors. Short nanorods appear to be more chemically reactive than long nanorods. Finally, optical applica...

2,905 citations

Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations