scispace - formally typeset
Search or ask a question
Author

A. A. Oliner

Bio: A. A. Oliner is an academic researcher. The author has contributed to research in topics: Grating & Wavelength. The author has an hindex of 1, co-authored 1 publications receiving 1039 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new theory of Wood's anomalies is presented which is based on a guided wave approach rather than the customary multiple scattering procedure, which provides both new insight and a method of calculation.
Abstract: A new theory of Wood’s anomalies is presented which is based on a guided wave approach rather than the customary multiple scattering procedure. This approach provides both new insight and a method of calculation. It is shown that two distinct types of anomalies may exist: a Rayleigh wavelength type due to the emergence of a new spectal order at grazing angle, and a resonance type which is related to the guided complex waves supportable by the grating. A general theoretical treatment is presented which makes use of a surface reactance to take into account the standing waves in the grating grooves, and which derives the locations and detailed shapes of the anomalies. Rigorous results are obtained for a specific example; the amplitudes of all of the spectral orders are determined explicitly, and the Wood’s anomaly effects are demonstrated clearly in graphical form for a variety of cases.

1,099 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The steep dispersion of the Fano resonance profile promises applications in sensors, lasing, switching, and nonlinear and slow-light devices.
Abstract: Since its discovery, the asymmetric Fano resonance has been a characteristic feature of interacting quantum systems. The shape of this resonance is distinctively different from that of conventional symmetric resonance curves. Recently, the Fano resonance has been found in plasmonic nanoparticles, photonic crystals, and electromagnetic metamaterials. The steep dispersion of the Fano resonance profile promises applications in sensors, lasing, switching, and nonlinear and slow-light devices.

3,536 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduce the concept of Fano resonances, which can be reduced to the interaction of a discrete (localized) state with a continuum of propagation modes, and explain their geometrical and/or dynamical origin.
Abstract: Modern nanotechnology allows one to scale down various important devices (sensors, chips, fibers, etc.) and thus opens up new horizons for their applications. The efficiency of most of them is based on fundamental physical phenomena, such as transport of wave excitations and resonances. Short propagation distances make phase-coherent processes of waves important. Often the scattering of waves involves propagation along different paths and, as a consequence, results in interference phenomena, where constructive interference corresponds to resonant enhancement and destructive interference to resonant suppression of the transmission. Recently, a variety of experimental and theoretical work has revealed such patterns in different physical settings. The purpose of this review is to relate resonant scattering to Fano resonances, known from atomic physics. One of the main features of the Fano resonance is its asymmetric line profile. The asymmetry originates from a close coexistence of resonant transmission and resonant reflection and can be reduced to the interaction of a discrete (localized) state with a continuum of propagation modes. The basic concepts of Fano resonances are introduced, their geometrical and/or dynamical origin are explained, and theoretical and experimental studies of light propagation in photonic devices, charge transport through quantum dots, plasmon scattering in Josephson-junction networks, and matter-wave scattering in ultracold atom systems, among others are reviewed.

2,520 citations

Journal ArticleDOI
TL;DR: A theory of the Fano resonance for optical resonators, based on a temporal coupled-mode formalism, is presented and it is shown that the coupling constants in such a theory are strongly constrained by energy-conservation and time-reversal symmetry considerations.
Abstract: We present a theory of the Fano resonance for optical resonators, based on a temporal coupled-mode formalism. This theory is applicable to the general scheme of a single optical resonance coupled with multiple input and output ports. We show that the coupling constants in such a theory are strongly constrained by energy-conservation and time-reversal symmetry considerations. In particular, for a two-port symmetric structure, Fano-resonant line shape can be derived by using only these symmetry considerations. We validate the analysis by comparing the theoretical predictions with three-dimensional finite-difference time-domain simulations of guided resonance in photonic crystal slabs. Such a theory may prove to be useful for response-function synthesis in filter and sensor applications.

1,223 citations

Journal ArticleDOI
TL;DR: The guided-mode resonance filter represents a basic new optical element with significant potential for practical applications and is presented and explained.
Abstract: The guided-mode resonance properties of planar dielectric waveguide gratings are presented and explained. It is shown that these structures function as filters that produce complete exchange of energy between forward- and backward-propagating diffracted waves with smooth line shapes and arbitrarily narrow filter linewidths. Simple expressions based on rigorous coupled-wave theory and on classical slab waveguide theory give a clear view and quantification of the inherent TE/TM polarization separation and the free spectral ranges of the filters. Furthermore, the resonance regimes, defining the parametric regions of the guided-mode resonances, can be directly visualized. It is shown that the linewidths of the resonances can be controlled by the grating modulation amplitude and by the degree of mode confinement (refractive-index difference at the boundaries). Examples presented of potential uses for these elements include a narrow-line polarized laser, a tunable polarized laser, a photorefractive tunable filter, and an electro-optic switch. The guided-mode resonance filter represents a basic new optical element with significant potential for practical applications.

1,166 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a perspective on the recent developments in the transmission of light through subwavelength apertures in metal films, and the physical mechanisms operating in the different structures considered are analyzed within a common theoretical framework.
Abstract: This review provides a perspective on the recent developments in the transmission of light through subwavelength apertures in metal films. The main focus is on the phenomenon of extraordinary optical transmission in periodic hole arrays, discovered over a decade ago. It is shown that surface electromagnetic modes play a key role in the emergence of the resonant transmission. These modes are also shown to be at the root of both the enhanced transmission and beaming of light found in single apertures surrounded by periodic corrugations. This review describes both the theoretical and experimental aspects of the subject. For clarity, the physical mechanisms operating in the different structures considered are analyzed within a common theoretical framework. Several applications based on the transmission properties of subwavelength apertures are also addressed.

1,160 citations