scispace - formally typeset
Search or ask a question
Author

A. Abdul Adam

Bio: A. Abdul Adam is an academic researcher from Universiti Malaysia Pahang. The author has contributed to research in topics: Diesel fuel & Diesel engine. The author has an hindex of 2, co-authored 4 publications receiving 359 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors provided the substantial information on biodiesel to the researchers, engineers and policy makers, and concluded that biodiesel has the potential to be used as a diesel fuel substitute in diesel engines to solve the energy and environment crisis.
Abstract: Due to the finite stock of fossil fuels and its negative impact on the environment, many countries across the world are now leaning toward renewable sources energies like solar energy, wind energy, biofuel, hydropower, geothermal and ocean energy to ensure energy for the countries development security. Biodiesel is one kind of biofuel that is renewable, biodegradable and has similar properties of fossil diesel fuel. The aim of this paper is to provide the substantial information on biodiesel to the researchers, engineers and policy makers. To achieve the goal, this paper summarizes the information on biofuel development, feedstocks around the world, oil extraction technic, biodiesel production processes. Furthermore, this paper will also discuss the advantages of biodiesel compared to fossil fuel. Finally, the combustion behavior of biodiesel in an internal combustion engine is discussed and it will help the researchers and policy maker and manufacturer. To determine the future and goal of automotive technology the study found that, feedstock selection for biodiesel production is very important as it associates 75% production cost. Moreover, the test of fuel properties is very important before using in the engine which depends on the type of feedstocks, origin country, and production process. Most of the researchers reported that the use of biodiesel in diesel engine reduces engine power slightly but reduces the harmful emission significantly. Finally, the study concludes that biodiesel has the potential to be used as a diesel fuel substitute in diesel engines to solve the energy and environment crisis.

467 citations

Journal ArticleDOI
01 Jan 2016
TL;DR: In this paper, an experiment was conducted to investigate the effect of water-in-diesel (WiDE) emulsions on the combustion performance and emulsion characteristics of a direct injection diesel engine under 0 to 50% engine loads at 0 to 300 psi with engine operating speeds of 1200 to 2500 rpm.
Abstract: With increasing energy prices and the drive to reduce CO 2 emissions, universities and industries face the challenge of finding new technologies to reduce energy consumption, to meet legal emission requirements and to reduce cost while increasing quality. In this study, an experiment was conducted to investigate the effect of water-in-diesel (WiDE) emulsions on the combustion performance and emulsion characteristics of a direct injection diesel engine under 0 to 50% engine loads at 0 to 300 psi with engine operating speeds of 1200 to 2500 rpm. The five types of emulsified diesel fuel used in this study consisted of WiDE-5%, WiDE-10%, WiDE-20%, WiDE-30% and WiDE-40% with 3% of the surfactants tested. The results show that 15–85% emulsion diesel fuel is comparable and compatible with pure diesel. The power curve shows the emulsion diesel to be relatively similar to pure diesel, but with slightly higher results at 0% (0 psi). The torque curve at 0% also shows the emulsion diesel to be similar to pure diesel where the 15 – 85% torque is higher than that of pure diesel. The engine torque, power and brake efficiency increase as the water percentage in the emulsion increases. The NO and CO 2 emission results of the 15–85% fuel were better than that of pure diesel; however, the CO emissions were higher, especially at higher engine speeds.

6 citations

01 Jan 2016
TL;DR: In this paper, the performance of dual fuel combustion in a compression ignition engine powered by blend diesel/palm oil biodiesel (50:50) and simulated gasification gas was investigated.
Abstract: The objective of this study was to investigate the performance of dual fuel combustion in a compression ignition engine powered by blend diesel/palm oil biodiesel (50:50) and simulated gasification gas. The in-cylinder pressure data was collected for each crank angle in order to investigate the combustion characteristics at constant half load over a range of pilot fuel substitution rate. Substantial differences in the in-cylinder peak pressure occurred and three phases of the dual fuel combustion process were clearly seen in the heat release rate curves when the engine load was maintained at half load. Maximum cylinder pressure was obtained with syngas dual fuelling at lower substitution rates. Lower engine efficiency of 33.84 was observed with syngas dual fuelling at the highest substitution rate of pilot fuel (28). © 2006-2016 Asian Research Publishing Network (ARPN).

2 citations

Journal ArticleDOI
01 Jan 2018
TL;DR: In this paper, the influence of the tube inclination angle on the thermal hydraulic performance of the flat tube heat exchanger is investigated. And the results of the numerical simulation results indicate that the average Nusselt number increased by 78.24 % for Reynolds number 1768.27 and 2259.46.
Abstract: Flat tubes heat exchangers are commonly used in many industrial applications as a consequence of the distinctive geometrical characteristics of the flat tube compared with round tube. This paper aims to investigate the flow and heat transfer characteristics of laminar cross-flow forced convection in compact fin-and-flat tube heat exchangers. The experiment was performed to explore the influence of the tube inclination angle on the thermal hydraulic performance of the flat tube heat exchanger. Four flat tubes arranged in two aligned rows having the same longitudinal and transverse pitches have been examined in the range of Reynolds number between 1768.27 and 2259.46. A constant heat flux of 4169.63 W/m2 was applied at the inner surface of each flat tube. On the other hand, the numerical simulation is solved by ANSYS FLUENT for a two dimensional model with unstructured mesh and the results are compared against the experimental results. The numerical simulation results indicate that the average Nusselt number increased by 78.24 % for Reynolds number 1768.27. Besides that, for Reynolds number 1964.75 and 2259.46 the Nusselt numbers were increased by 75.89 % and 54.49%, respectively, compared to experimental results. Moreover, the pressure drop is increased 25 % and 83.38 % for both experimental and numerical simulation with respect to three Reynolds number. It was found that, the tube with 30° degree provides the higher heat transfer with Reynolds number 2259.46. This study could assist engineers in decisions regarding the application of compact fin-and-tube heat exchangers in the automotive field.

Cited by
More filters
Journal ArticleDOI
15 Feb 2020-Fuel
TL;DR: In this article, a comprehensive assessment of various feedstocks used for different generation biodiesel production with their advantages and disadvantages are also explained, and different production methods for biodiesel with yield calculation is also explained.

505 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of biodiesel production with a description of various kinds of feedstock used, their advantages and disadvantages, and a detailed description of different classes of different biodiesel, including a characterization, assessment of qualities and limitations, and quality analysis.
Abstract: The over-exploitation of non-renewable resources leads to the depletion of energy reserves, as well as a rise in the price of petroleum-based fuels. Thus, there is a need to find suitable and sustainable substitutes for conventional fuels. The main features required for an alternative fuel are availability and renewability, or lower dependence on restricted resources accompanied with no or lower pollution. Due to their eco-friendly and non-toxic nature, biodiesel has been attracting increasing interest. Biodiesel production can be accomplished using various raw materials, catalysts, and technologies. In recent years, nanocatalyst technology has been widely used for biodiesel production due to its numerous advantages, such as large surface area, reusability and high activity of the nanocatalyst. This review provides an overview of biodiesel production with a description of various kinds of feedstock used, their advantages and disadvantages. Further, it offers a detailed description of different classes of biodiesel, including a characterization, assessment of qualities and limitations, and quality analysis of each type. Various methodologies used for biodiesel production are also elucidated, focusing on the potential of nanocatalyst processes. The aspect of nanocatalyst regeneration and reuse is also considered. This review delivers a comprehensive overview of biodiesel synthesis by discussing recent trends and challenges in this field, which will further the development of economically sustainable biodiesel production.

402 citations

Journal ArticleDOI
TL;DR: In this article, the authors comprehensively reviewed biodiesel manufacturing techniques from natural oils and fats using conventional and advanced technologies with an in-depth state-of-the-art focus on the transesterification unit.

294 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a comprehensive review of biodiesel as an alternative fuel for marine diesel engine applications and conclude that biodiesel and its blends have a bright future in the marine sector, provided some of the highlighted issues can be solved.
Abstract: Transportation and shipping activities are major contributor to air pollution at sea where most of it occurs as a result of exhaust emissions from ships. Stringent emission limitations enforced by the International Maritime Organization have hastened the need to find a new alternative fuel for marine diesel engines. Thus, biodiesel fuel was chosen as one of the environmentally friendly alternative energy that can reduce ship toxic gas emissions and at the same time reduces dependence on petroleum-based fuels. Therefore, the purpose of this paper is to provide a comprehensive review of biodiesel as an alternative fuel for marine diesel engine applications. This review covers the biodiesel fuel background, engine performance, history, recent progress, engine warranty, issues, challenges, and possible solutions on using biodiesel for marine applications. A significant number of literatures from indexed journals were cited accordingly. The results of previous studies had shown that the use of biodiesel would mostly increase the amount of brake specific fuel consumption and nitrogen oxide gas while conversely reducing other toxic gas emissions. Although a number of issues and challenges arise, most marine engine manufacturers give conditional warranty against the use of biodiesel in the engines. The study concluded that biodiesel and its blends have a bright future in the marine sector, provided some of the highlighted issues can be solved.

234 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the recent finding in transesterification of non-edible sources for biodiesel production as well as its economic aspects, fuel properties, and by-products applications.

213 citations