scispace - formally typeset
Search or ask a question
Author

A. Beck

Other affiliations: JDSU
Bio: A. Beck is an academic researcher from IBM. The author has contributed to research in topics: Non-volatile memory & Oxide. The author has an hindex of 2, co-authored 2 publications receiving 1727 citations. Previous affiliations of A. Beck include JDSU.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that positive or negative voltage pulses can switch the resistance of the oxide films between a low- and a high-impedance state in times shorter than 100 ns.
Abstract: Thin oxide films with perovskite or related structures and with transition metal doping show a reproducible switching in the leakage current with a memory effect. Positive or negative voltage pulses can switch the resistance of the oxide films between a low- and a high-impedance state in times shorter than 100 ns. The ratio between these two states is typically about 20 but can exceed six orders of magnitude. Once a low-impedance state has been achieved it persists without a power connection for months, demonstrating the feasibility of nonvolatile memory elements. Even multiple levels can be addressed to store two bits in such a simple capacitor-like structure.

1,201 citations

Journal ArticleDOI
TL;DR: In this article, a dc-current-induced reversible insulator-conductor transition with resistance changes of up to five orders of magnitude was found in doped SrTiO3 single crystals.
Abstract: Materials showing reversible resistive switching are attractive for today’s semiconductor technology with its wide interest in nonvolatile random-access memories. In doped SrTiO3 single crystals, we found a dc-current-induced reversible insulator–conductor transition with resistance changes of up to five orders of magnitude. This conducting state allows extremely reproducible switching between different impedance states by current pulses with a performance required for nonvolatile memories. The results indicate a type of charge-induced bulk electronic change as a prerequisite for the memory effect, scaling down to nanometer-range electrode sizes in thin films.

578 citations


Cited by
More filters
Journal ArticleDOI
01 May 2008-Nature
TL;DR: It is shown, using a simple analytical example, that memristance arises naturally in nanoscale systems in which solid-state electronic and ionic transport are coupled under an external bias voltage.
Abstract: Anyone who ever took an electronics laboratory class will be familiar with the fundamental passive circuit elements: the resistor, the capacitor and the inductor. However, in 1971 Leon Chua reasoned from symmetry arguments that there should be a fourth fundamental element, which he called a memristor (short for memory resistor). Although he showed that such an element has many interesting and valuable circuit properties, until now no one has presented either a useful physical model or an example of a memristor. Here we show, using a simple analytical example, that memristance arises naturally in nanoscale systems in which solid-state electronic and ionic transport are coupled under an external bias voltage. These results serve as the foundation for understanding a wide range of hysteretic current-voltage behaviour observed in many nanoscale electronic devices that involve the motion of charged atomic or molecular species, in particular certain titanium dioxide cross-point switches.

8,971 citations

Journal ArticleDOI
TL;DR: A coarse-grained classification into primarily thermal, electrical or ion-migration-induced switching mechanisms into metal-insulator-metal systems, and a brief look into molecular switching systems is taken.
Abstract: Many metal–insulator–metal systems show electrically induced resistive switching effects and have therefore been proposed as the basis for future non-volatile memories. They combine the advantages of Flash and DRAM (dynamic random access memories) while avoiding their drawbacks, and they might be highly scalable. Here we propose a coarse-grained classification into primarily thermal, electrical or ion-migration-induced switching mechanisms. The ion-migration effects are coupled to redox processes which cause the change in resistance. They are subdivided into cation-migration cells, based on the electrochemical growth and dissolution of metallic filaments, and anion-migration cells, typically realized with transition metal oxides as the insulator, in which electronically conducting paths of sub-oxides are formed and removed by local redox processes. From this insight, we take a brief look into molecular switching systems. Finally, we discuss chip architecture and scaling issues.

4,547 citations

Journal ArticleDOI
TL;DR: The performance requirements for computing with memristive devices are examined and how the outstanding challenges could be met are examined.
Abstract: Memristive devices are electrical resistance switches that can retain a state of internal resistance based on the history of applied voltage and current. These devices can store and process information, and offer several key performance characteristics that exceed conventional integrated circuit technology. An important class of memristive devices are two-terminal resistance switches based on ionic motion, which are built from a simple conductor/insulator/conductor thin-film stack. These devices were originally conceived in the late 1960s and recent progress has led to fast, low-energy, high-endurance devices that can be scaled down to less than 10 nm and stacked in three dimensions. However, the underlying device mechanisms remain unclear, which is a significant barrier to their widespread application. Here, we review recent progress in the development and understanding of memristive devices. We also examine the performance requirements for computing with memristive devices and detail how the outstanding challenges could be met.

3,037 citations

Journal ArticleDOI
TL;DR: Experimental evidence is provided to support this general model of memristive electrical switching in oxide systems, and micro- and nanoscale TiO2 junction devices with platinum electrodes that exhibit fast bipolar nonvolatile switching are built.
Abstract: Nanoscale metal/oxide/metal switches have the potential to transform the market for nonvolatile memory and could lead to novel forms of computing. However, progress has been delayed by difficulties in understanding and controlling the coupled electronic and ionic phenomena that dominate the behaviour of nanoscale oxide devices. An analytic theory of the ‘memristor’ (memory-resistor) was first developed from fundamental symmetry arguments in 1971, and we recently showed that memristor behaviour can naturally explain such coupled electron–ion dynamics. Here we provide experimental evidence to support this general model of memristive electrical switching in oxide systems. We have built micro- and nanoscale TiO2 junction devices with platinum electrodes that exhibit fast bipolar nonvolatile switching. We demonstrate that switching involves changes to the electronic barrier at the Pt/TiO2 interface due to the drift of positively charged oxygen vacancies under an applied electric field. Vacancy drift towards the interface creates conducting channels that shunt, or short-circuit, the electronic barrier to switch ON. The drift of vacancies away from the interface annilihilates such channels, recovering the electronic barrier to switch OFF. Using this model we have built TiO2 crosspoints with engineered oxygen vacancy profiles that predictively control the switching polarity and conductance. Nanoscale metal/oxide/metal devices that are capable of fast non-volatile switching have been built from platinum and titanium dioxide. The devices could have applications in ultrahigh density memory cells and novel forms of computing.

2,744 citations