scispace - formally typeset
Search or ask a question
Author

A. Block-Bolten

Bio: A. Block-Bolten is an academic researcher. The author has contributed to research in topics: Hydrogen bond & Outer sphere electron transfer. The author has an hindex of 24, co-authored 96 publications receiving 1834 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the advantages of both Sephadex gel filtration and thin-layer chromatography can now be utilized with the Superfine gel filter for column electrophoresis and partition chromatography.
Abstract: Sephadex SUPERFINE The advantages of both Sephadex gel filtration and thin-layerchromatographycan now be utilized with the Sephadex Superfine. Sephadex Superfine is an important complement to other analytic methods, particularly where only sample quantities of experimental material are available. It is useful also (1) for determining the optimum conditions for column experiments (2) in place of normal Sephadex in gel filtration columns when very high resolution is required (3) as a supporting medium in column electrophoresis and in partition chromatography.

69 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.
Abstract: The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.

2,582 citations

Book ChapterDOI
TL;DR: In this article, a review is concerned with the neglected class of inorganic compounds, which contain ions of the same element in two different formal states of oxidation, and a number of references cite that many individual examples of this class have been studied, yet they have very rarely been treated as a class, and there has never before, to our knowledge, been a systematic attempt to classify their properties in terms of their electronic and molecular structures.
Abstract: Publisher Summary This review is concerned with the neglected class of inorganic compounds, which contain ions of the same element in two different formal states of oxidation. Although the number of references cited in our review show that many individual examples of this class have been studied, yet they have very rarely been treated as a class, and there has never before, to our knowledge, been a systematic attempt to classify their properties in terms of their electronic and molecular structures. In the past, systems containing an element in two different states of oxidation have gone by various names, the terms “mixed valence,” nonintegral valence,” “mixed oxidation,” “oscillating valency,” and “controlled valency” being used interchangeably. Actually, none of these is completely accurate or all-embracing, but in our hope to avoid the introduction of yet another definition, we have somewhat arbitrarily adopted the phrase “mixed valence” for the description of these systems. The concept of resonance among various valence bond structures is one of the cornerstones of modern organic chemistry.

2,208 citations

Journal ArticleDOI
TL;DR: Alginate, being an anionic polymer with carboxyl end groups, is a good mucoadhesive agent and cross-linked alginate has more capacity to retain the entrapped drugs and mixing of alginates with other polymers such as neutral gums, chitosan, and eudragit have been found to solve the problem of drug leaching.

1,724 citations

Journal ArticleDOI
TL;DR: By selection of the type of alginate and coating agent, the pore size, degradation rate, and ultimately release kinetics can be controlled.

1,605 citations

Journal ArticleDOI
TL;DR: The first general, detailed qualitative molecular mechanism for the origins of ion-specific (Hofmeister) effects on the surface potential difference at an air-water interface is proposed; this mechanism suggests a simple model for the behaviour of water at all interfaces, regardless of whether the non-aqueous component is neutral or charged, polar or non-polar.
Abstract: Starting from known properties of non-specific salt effects on the surface tension at an air–water interface, we propose the first general, detailed qualitative molecular mechanism for the origins of ion-specific (Hofmeister) effects on the surface potential difference at an air–water interface; this mechanism suggests a simple model for the behaviour of water at all interfaces (including water–solute interfaces), regardless of whether the non-aqueous component is neutral or charged, polar or non-polar Specifically, water near an isolated interface is conceptually divided into three layers, each layer being 1 water-molecule thick We propose that the solute determines the behaviour of the adjacent first interfacial water layer ( I 1 ); that the bulk solution determines the behaviour of the third interfacial water layer ( I 3 ), and that both I 1 and I 3 compete for hydrogen-bonding interactions with the intervening water layer ( I 2 ), which can be thought of as a transition layer The model requires that a polar kosmotrope (polar water-structure maker) interact with I 1 more strongly than would bulk water in its place; that a chaotrope (water-structure breaker) interact with I 1 somewhat less strongly than would bulk water in its place; and that a non-polar kosmotrope (non-polar water-structure maker) interact with I 1 much less strongly than would bulk water in its place We introduce two simple new postulates to describe the behaviour of I 1 water molecules in aqueous solution The first, the ‘relative competition’ postulate, states that an I 1 water molecule, in maximizing its free energy (—δG), will favour those of its highly directional polar (hydrogen-bonding) interactions with its immediate neighbours for which the maximum pairwise enthalpy of interaction (—δ H ) is greatest; that is, it will favour the strongest interactions We describe such behaviour as ‘compliant’, since an I 1 water molecule will continually adjust its position to maximize these strong interactions Its behaviour towards its remaining immediate neighbours, with whom it interacts relatively weakly (but still favourably), we describe as ‘recalcitrant’, since it will be unable to adjust its position to maximize simultaneously these interactions The second, the ‘charge transfer’ postulate, states that the strong polar kosmotrope–water interaction has at least a small amount of covalent character, resulting in significant transfer of charge from polar kosmotropes to water–especially of negative charge from Lewis bases (both neutral and anionic); and that the water-structuring effect of polar kosmotropes is caused not only by the tight binding (partial immobilization) of the immediately adjacent ( I 1 ) water molecules, but also by an attempt to distribute among several water molecules the charge transferred from the solute When extensive, cumulative charge transfer to solvent occurs, as with macromolecular polyphosphates, the solvation layer (the layer of solvent whose behaviour is determined by the solute) can become up to 5- or 6-water-molecules thick We then use the ‘relative competition’ postulate, which lends itself to simple diagramming, in conjunction with the ‘charge transfer’ postulate to provide a new, startlingly simple and direct qualitative explanation for the heat of dilution of neutral polar solutes and the temperature dependence of relative viscosity of neutral polar solutes in aqueous solution This explanation also requires the new and intriguing general conclusion that as the temperature of aqueous solutions is lowered towards o °C, solutes tend to acquire a non-uniform distribution in the solution, becoming increasingly likely to cluster 2 water molecules away from other solutes and surfaces (the driving force for this process being the conversion of transition layer water to bulk water) The implications of these conclusions for understanding the mechanism of action of general (gaseous) anaesthetics and other important interfacial phenomena are then addressed

1,468 citations