scispace - formally typeset
Search or ask a question
Author

A. Brunot

Bio: A. Brunot is an academic researcher. The author has contributed to research in topics: Intelligent word recognition. The author has an hindex of 1, co-authored 1 publications receiving 602 citations.

Papers
More filters
01 Jan 1995
TL;DR: This comparison of several learning algorithms for handwritten digits considers not only raw accuracy, but also rejection, training time, recognition time, and memory requirements.
Abstract: COMPARISON OF LEARNINGALGORITHMS FOR HANDWRITTEN DIGITRECOGNITIONY. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes,J. Denker, H. Drucker, I. Guyon, U. M uller,E. Sackinger, P. Simard, and V. VapnikBell Lab oratories, Holmdel, NJ 07733, USAEmail: yann@research.att.comAbstractThis pap er compares the p erformance of several classi er algorithmson a standard database of handwritten digits. We consider not only rawaccuracy, but also rejection, training time, recognition time, and memoryrequirements.1

633 citations


Cited by
More filters
Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
08 Feb 1999
TL;DR: Support vector machines for dynamic reconstruction of a chaotic system, Klaus-Robert Muller et al pairwise classification and support vector machines, Ulrich Kressel.
Abstract: Introduction to support vector learning roadmap. Part 1 Theory: three remarks on the support vector method of function estimation, Vladimir Vapnik generalization performance of support vector machines and other pattern classifiers, Peter Bartlett and John Shawe-Taylor Bayesian voting schemes and large margin classifiers, Nello Cristianini and John Shawe-Taylor support vector machines, reproducing kernel Hilbert spaces, and randomized GACV, Grace Wahba geometry and invariance in kernel based methods, Christopher J.C. Burges on the annealed VC entropy for margin classifiers - a statistical mechanics study, Manfred Opper entropy numbers, operators and support vector kernels, Robert C. Williamson et al. Part 2 Implementations: solving the quadratic programming problem arising in support vector classification, Linda Kaufman making large-scale support vector machine learning practical, Thorsten Joachims fast training of support vector machines using sequential minimal optimization, John C. Platt. Part 3 Applications: support vector machines for dynamic reconstruction of a chaotic system, Davide Mattera and Simon Haykin using support vector machines for time series prediction, Klaus-Robert Muller et al pairwise classification and support vector machines, Ulrich Kressel. Part 4 Extensions of the algorithm: reducing the run-time complexity in support vector machines, Edgar E. Osuna and Federico Girosi support vector regression with ANOVA decomposition kernels, Mark O. Stitson et al support vector density estimation, Jason Weston et al combining support vector and mathematical programming methods for classification, Bernhard Scholkopf et al.

5,506 citations

Proceedings Article
05 Dec 2005
TL;DR: In this article, a Mahanalobis distance metric for k-NN classification is trained with the goal that the k-nearest neighbors always belong to the same class while examples from different classes are separated by a large margin.
Abstract: We show how to learn a Mahanalobis distance metric for k-nearest neighbor (kNN) classification by semidefinite programming. The metric is trained with the goal that the k-nearest neighbors always belong to the same class while examples from different classes are separated by a large margin. On seven data sets of varying size and difficulty, we find that metrics trained in this way lead to significant improvements in kNN classification—for example, achieving a test error rate of 1.3% on the MNIST handwritten digits. As in support vector machines (SVMs), the learning problem reduces to a convex optimization based on the hinge loss. Unlike learning in SVMs, however, our framework requires no modification or extension for problems in multiway (as opposed to binary) classification.

4,433 citations

Journal ArticleDOI
TL;DR: This issue's collection of essays should help familiarize readers with this interesting new racehorse in the Machine Learning stable, and give a practical guide and a new technique for implementing the algorithm efficiently.
Abstract: My first exposure to Support Vector Machines came this spring when heard Sue Dumais present impressive results on text categorization using this analysis technique. This issue's collection of essays should help familiarize our readers with this interesting new racehorse in the Machine Learning stable. Bernhard Scholkopf, in an introductory overview, points out that a particular advantage of SVMs over other learning algorithms is that it can be analyzed theoretically using concepts from computational learning theory, and at the same time can achieve good performance when applied to real problems. Examples of these real-world applications are provided by Sue Dumais, who describes the aforementioned text-categorization problem, yielding the best results to date on the Reuters collection, and Edgar Osuna, who presents strong results on application to face detection. Our fourth author, John Platt, gives us a practical guide and a new technique for implementing the algorithm efficiently.

4,319 citations

Journal ArticleDOI
TL;DR: This paper shows how to learn a Mahalanobis distance metric for kNN classification from labeled examples in a globally integrated manner and finds that metrics trained in this way lead to significant improvements in kNN Classification.
Abstract: The accuracy of k-nearest neighbor (kNN) classification depends significantly on the metric used to compute distances between different examples. In this paper, we show how to learn a Mahalanobis distance metric for kNN classification from labeled examples. The Mahalanobis metric can equivalently be viewed as a global linear transformation of the input space that precedes kNN classification using Euclidean distances. In our approach, the metric is trained with the goal that the k-nearest neighbors always belong to the same class while examples from different classes are separated by a large margin. As in support vector machines (SVMs), the margin criterion leads to a convex optimization based on the hinge loss. Unlike learning in SVMs, however, our approach requires no modification or extension for problems in multiway (as opposed to binary) classification. In our framework, the Mahalanobis distance metric is obtained as the solution to a semidefinite program. On several data sets of varying size and difficulty, we find that metrics trained in this way lead to significant improvements in kNN classification. Sometimes these results can be further improved by clustering the training examples and learning an individual metric within each cluster. We show how to learn and combine these local metrics in a globally integrated manner.

4,157 citations