scispace - formally typeset
Search or ask a question
Author

A. Collet

Bio: A. Collet is an academic researcher from Collège de France. The author has contributed to research in topics: Cryptophane & Cyclotriveratrylene. The author has an hindex of 9, co-authored 17 publications receiving 834 citations.

Papers
More filters
Journal ArticleDOI
A. Collet1

345 citations

Journal ArticleDOI
TL;DR: In this paper, a macro-cyclic N3O3 binding unit with a rigid cyclotriveratrylene unit via three bridges was synthesized by connecting two macropolycyclic molecules.
Abstract: Combination of a receptor unit with a rigid shaping unit produces a new type of receptor molecules of the cryptand class, hollow macropolycyclic molecules termed speleands, capable of substrate inclusion. Two members of this category of compounds 1 and 2, have been synthesized by connecting in a single step, a macro-cyclic [18]-N3O3 binding unit with a rigid cyclotriveratrylene unit via three bridges. Compound 1 binds the rnethylammonium cation forming both external and internal complexes; for the latter a ‘speleme’ structure, schematically represented by 15, may be proposed.

81 citations

Journal ArticleDOI
TL;DR: In this paper, the authors define the stabilite racemiques vrais, i.e., the transition between cristallines entre racemique vrai and conglomerat, as follows: ΔGφ, variant of 0 a − 2 kcal mol−1 environ.

59 citations

Journal ArticleDOI
TL;DR: In this article, simple amino acids can be converted in fair to good yield into hydrazino acids of like configuration by using KOCl instead of NaOCl to promote the Shestakov rearrangement of the intermediate hydantoic acids.

52 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This tutorial review focuses on the use of dynamic imine bonds in the construction of compounds and products formed with and without the aid of additional templates.
Abstract: Formation of an imine—from an amine and an aldehyde—is a reversible reaction which operates under thermodynamic control such that the formation of kinetically competitive intermediates are, in the fullness of time, replaced by the thermodynamically most stable product(s). For this fundamental reason, the imine bond has emerged as an extraordinarily diverse and useful one in the hands of synthetic chemists. Imine bond formation is one of a handful of reactions which define a discipline known as dynamic covalent chemistry (DCC), which is now employed widely in the construction of exotic molecules and extended structures on account of the inherent ‘proof-reading’ and ‘error-checking’ associated with these reversible reactions. While both supramolecular chemistry and DCC operate under the regime of reversibility, DCC has the added advantage of constructing robust molecules on account of the formation of covalent bonds rather than fragile supermolecules resulting from noncovalent bonding interactions. On the other hand, these products tend to require more time to form—sometimes days or even months—but their formation can often be catalysed. In this manner, highly symmetrical molecules and extended structures can be prepared from relatively simple precursors. When DCC is utilised in conjunction with template-directed protocols—which rely on the use of noncovalent bonding interactions between molecular building blocks in order to preorganise them into certain relative geometries as a prelude to the formation of covalent bonds under equilibrium control—an additional level of control of structure and topology arises which offers a disarmingly simple way of constructing mechanically-interlocked molecules, such as rotaxanes, catenanes, Borromean rings, and Solomon knots. This tutorial review focuses on the use of dynamic imine bonds in the construction of compounds and products formed with and without the aid of additional templates. While synthesis under thermodynamic control is giving the field of chemical topology a new lease of life, it is also providing access to an endless array of new materials that are, in many circumstances, simply not accessible using more traditional synthetic methodologies where kinetic control rules the roost. One of the most endearing qualities of chemistry is its ability to reinvent itself in order to create its own object, as Berthelot first pointed out a century and a half ago.

859 citations

Journal ArticleDOI
Lee Fielding1

736 citations

Journal ArticleDOI
22 Feb 1985-Science
TL;DR: Supramolecular chemistry is the study of the structures and functions of the supermolecules that result from binding substrates to molecular receptors.
Abstract: Supramolecular chemistry is the study of the structures and functions of the supermolecules that result from binding substrates to molecular receptors. Macropolycyclic receptors and coreceptors have been designed that form cryptate inclusion complexes and display molecular recognition towards spherical, tetrahedral, and linear substrates of various kinds (metal cations, inorganic anions, and organic or biological cations or anions). Anion binding has led to the development of anion coordination chemistry. Metalloreceptors simultaneously bind organic molecules and metal ions; speleands combine polar and nonpolar binding subunits. Receptors bearing reactive functional groups may act as molecular reagents or catalysts, performing a chemical transformation on the bound substrates (by such reactions as hydrogen transfer, ester cleavage, and protoadenosinetriphosphatase and protokinase activities). Receptors fitted with lipophilic groups can operate as molecular carriers, translocating bound species through a membrane; this transport can be coupled to chemical potentials (proton and redox gradients).

672 citations

Journal ArticleDOI
TL;DR: In this paper, the Molekulare Erkennung in Ubermolekulen, die bei der Rezeptor/Substrat-Bindung entstehen, beruht auf dem Prinzip der molekularen Komplementaritat.
Abstract: Supramolekulare Chemie ist die Chemie der intermolekularen Bindung und beschaftigt sich mit Strukturen und Funktionen von Einheiten, die durch Assoziation von zwei oder mehr chemischen Spezies gebildet werden. Molekulare Erkennung in Ubermolekulen, die bei der Rezeptor/Substrat-Bindung entstehen, beruht auf dem Prinzip der molekularen Komplementaritat, wie es bei der Erkennung spharischer, tetraedrischer und linearer Substrate durch Rezeptoren, Corezeptoren, Metallorezeptoren und amphiphile Rezeptoren vorgefunden wird. Supramolekulare Katalyse mit Rezeptoren, die reaktive Gruppen tragen, bewirkt Bindungsspaltungen und -knupfungen durch Cokatalyse. Lipophile Rezeptoren konnen als selektive Carrier fur verschiedenartige Substrate verwendet werden, und sie ermoglichen den Aufbau von Transportsystemen, die mit einem Elektronen- oder Protonengradienten oder mit einem Photoprozes gekoppelt sind. Wahrend Endorezeptoren Substrate durch „konvergente Wechselwirkungen” in Molekulhohlraumen binden, werden bei Exorezeptoren die Substrate durch Wechselwirkungen zwischen den Ausenflachen von Rezeptor und Substrat gebunden. Demgemas lassen sich neue Typen von Rezeptoren, z. B. die Metallonucleate, entwickeln. In polymolekularen Aggregaten konnen Rezeptoren, Carrier und Katalysatoren zu molekularen und supramolekularen Funktionseinheiten fuhren, die strukturell organisierte und funktionell integrierte chemische Systeme sind („supramolekulare Architektur”). Erkennungs-, Translokations- und Transformationsprozesse mit molekularen Funktionseinheiten werden unter dem Gesichtspunkt analysiert, ob sie durch Photonen, Elektronen oder Ionen ausgelost werden konnen. Auf diese Weise lassen sich die Gebiete der molekularen Photonik, Elektronik und Ionik definieren. Fuhrt man photosensitive Gruppen ein, ergeben sich photoaktive Rezeptoren, die sich zur Lichtumwandlung und Ladungstrennung eignen. Redoxaktive, langkettige Polyolefine – „molekulare Drahte” – konnen Elektronen, z. B. durch Membranen, ubertragen. Tubulare Mesophasen, die durch Stapelung geeigneter makrocyclischer Rezeptoren entstehen, konnen Ionenkanale bilden. Bei acyclischen Liganden gibt es das Phanomen der molekularen Selbstorganisation, was zu Komplexen mit doppelt-helicaler Struktur fuhrt. Derartige Entwicklungen im Bereich des „molekularen und supramolekularen Designs und Engineerings” lassen auf photonische, elektronische und ionische molekulare Funktionseinheiten hoffen, die hochselektive Erkennungs-, Umwandlungs- und Ubertragungsprozesse – Verarbeitung von Signalen und Informationen auf molekularer Ebene – ausfuhren konnen.

556 citations