scispace - formally typeset
Search or ask a question
Author

A. D. Kersey

Bio: A. D. Kersey is an academic researcher. The author has contributed to research in topics: Graded-index fiber & Long-period fiber grating. The author has an hindex of 1, co-authored 1 publications receiving 475 citations.

Papers
More filters

Cited by
More filters
Journal Article•DOI•
TL;DR: In this paper, the authors review the recent developments in the area of optical fiber grating sensors, including quasi-distributed strain sensing using Bragg gratings, systems based on chirped gratings and intragrating sensing concepts.
Abstract: We review the recent developments in the area of optical fiber grating sensors, including quasi-distributed strain sensing using Bragg gratings, systems based on chirped gratings, intragrating sensing concepts, long period-based grating sensors, fiber grating laser-based systems, and interferometric sensor systems based on grating reflectors.

3,665 citations

Journal Article•DOI•
TL;DR: In this paper, the authors reviewed recent research on fiber optic long-period gratings (LPGs) with emphasis placed upon the characteristics of LPGs that make them attractive for applications in sensing strain, temperature, bend radius and external index of refraction.
Abstract: Recent research on fibre optic long-period gratings (LPGs) is reviewed with emphasis placed upon the characteristics of LPGs that make them attractive for applications in sensing strain, temperature, bend radius and external index of refraction. The prospect of the development of multi-parameter sensors, capable of simultaneously monitoring a number of these measurands will be discussed.

1,203 citations

Journal Article•DOI•
TL;DR: The recent research and development activities in structural health monitoring using FBG sensors have been critically reviewed, highlighting the areas where further work is needed.
Abstract: In-service structural health monitoring (SHM) of engineering structures has assumed a significant role in assessing their safety and integrity. Fibre Bragg grating (FBG) sensors have emerged as a reliable, in situ, non-destructive tool for monitoring, diagnostics and control in civil structures. The versatility of FBG sensors represents a key advantage over other technologies in the structural sensing field. In this article, the recent research and development activities in structural health monitoring using FBG sensors have been critically reviewed, highlighting the areas where further work is needed. A few packaging schemes for FBG strain sensors are also discussed. Finally a few limitations and market barriers associated with the use of these sensors have been addressed.

858 citations

Journal Article•DOI•
TL;DR: This work presents an overview of progress and developments in the field of fiber optic sensor technology, highlighting the major issues underpinning recent research and illustrating a number of important applications and key areas of effective Fiber optic sensor development.
Abstract: This work presents an overview of progress and developments in the field of fiber optic sensor technology, highlighting the major issues underpinning recent research and illustrating a number of important applications and key areas of effective fiber optic sensor development.

823 citations

Journal Article•DOI•
TL;DR: In this article, the authors demonstrate that the change in wavelength of a long period fiber grating attenuation band with changes in external index of refraction can be enhanced by proper selection of the grating period.
Abstract: This paper demonstrates that the change in wavelength of a long period fiber grating attenuation band with changes in external index of refraction can be enhanced by proper selection of the grating period. We calculate and experimentally verify that the wavelength shift caused by changing the external index from n=1 to n=1.44 of the attenuation band which appears in the 1400-1600 nm region in a 200-/spl mu/m period grating is four times that in a 350-/spl mu/m period grating. Changes in the spectrum over a wavelength range from 1100 to 1600 nm and 1

747 citations