scispace - formally typeset
Search or ask a question
Author

A. Dallmeyer

Bio: A. Dallmeyer is an academic researcher from Forschungszentrum Jülich. The author has contributed to research in topics: Magnetism & Magnetization. The author has an hindex of 8, co-authored 13 publications receiving 1792 citations.

Papers
More filters
Journal ArticleDOI
16 May 2003-Science
TL;DR: The isotropic magnetic moment of a free atom is shown to develop giant magnetic anisotropy energy due to symmetry reduction at an atomically ordered surface and the results confirm theoretical predictions and are of fundamental value to understanding how magnetic an isotropy develops in finite-sized magnetic particles.
Abstract: The isotropic magnetic moment of a free atom is shown to develop giant magnetic anisotropy energy due to symmetry reduction at an atomically ordered surface. Single cobalt atoms deposited onto platinum (111) are found to have a magnetic anisotropy energy of 9 millielectron volts per atom arising from the combination of unquenched orbital moments (1.1 Bohr magnetons) and strong spin-orbit coupling induced by the platinum substrate. By assembling cobalt nanoparticles containing up to 40 atoms, the magnetic anisotropy energy is further shown to be dependent on single-atom coordination changes. These results confirm theoretical predictions and are of fundamental value to understanding how magnetic anisotropy develops in finite-sized magnetic particles.

887 citations

Journal ArticleDOI
21 Mar 2002-Nature
TL;DR: Evidence is found that the monatomic chains consist of thermally fluctuating segments of ferromagnetically coupled atoms which, below a threshold temperature, evolve into a ferromagnetic long-range-ordered state owing to the presence of anisotropy barriers.
Abstract: Two-dimensional systems, such as ultrathin epitaxial films and superlattices, display magnetic properties distinct from bulk materials. A challenging aim of current research in magnetism is to explore structures of still lower dimensionality. As the dimensionality of a physical system is reduced, magnetic ordering tends to decrease as fluctuations become relatively more important. Spin lattice models predict that an infinite one-dimensional linear chain with short-range magnetic interactions spontaneously breaks up into segments with different orientation of the magnetization, thereby prohibiting long-range ferromagnetic order at a finite temperature. These models, however, do not take into account kinetic barriers to reaching equilibrium or interactions with the substrates that support the one-dimensional nanostructures. Here we demonstrate the existence of both short- and long-range ferromagnetic order for one-dimensional monatomic chains of Co constructed on a Pt substrate. We find evidence that the monatomic chains consist of thermally fluctuating segments of ferromagnetically coupled atoms which, below a threshold temperature, evolve into a ferromagnetic long-range-ordered state owing to the presence of anisotropy barriers. The Co chains are characterized by large localized orbital moments and correspondingly large magnetic anisotropy energies compared to two-dimensional films and bulk Co.

718 citations

Journal ArticleDOI
TL;DR: One-dimensional Co atomic wires grown on Pt(997) have been investigated by x-ray magnetic circular dichroism and the easy axis of magnetization, the magnetic anisotropy energy, and the coercive field oscillate as a function of the transverse width of the wires, in agreement with theoretical predictions for 1D metal systems.
Abstract: One-dimensional Co atomic wires grown on Pt(997) have been investigated by x-ray magnetic circular dichroism. Strong changes of the magnetic properties are observed as the system evolves from 1D- to 2D-like. The easy axis of magnetization, the magnetic anisotropy energy, and the coercive field oscillate as a function of the transverse width of the wires, in agreement with theoretical predictions for 1D metal systems.

129 citations

Journal ArticleDOI
TL;DR: In this paper, the electronic structure and magnetic behavior of a material can be significantly modified by reducing its dimensions along one or more directions in space, which gives rise to electronic and magnetic properties for low-dimensional systems that have no counterpart in the bulk.
Abstract: The electronic structure and magnetic behavior of a material can be significantly modified by reducing its dimensions along one or more directions in space. Quantum-size effects give rise to electronic and magnetic properties for low-dimensional systems that have no counterpart in the bulk. The physical realization of these systems opens up the possibility of designing new kinds of materials ~‘‘atomic engineering of materials’’ !. Nearly two-dimensional ~2D! magnetic systems, such as ultrathin films and superlattices, have recently been the aim of intensive investigations. 1,2 How

60 citations

Journal ArticleDOI
TL;DR: The spin-resolved photoemission data demonstrate the inadequacy of the Stoner model to the description of magnetism in rare earths.
Abstract: The temperature dependence of the rare-earth valence bands has been regarded as a realization of the Stoner behavior. The exchange splitting of the electronic states appears to scale as the magnetic order parameter for $Tl{T}_{C}$ and to vanish at ${T\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}T}_{C}$. We report here a spin-resolved photoemission study on the evolution of Gd bulk bands for $0.5\ensuremath{\le}{T/T}_{C}\ensuremath{\le}1$. The spin-polarized spectral line shapes display a complex temperature dependence, which clearly contrasts with the interpretation of previous experimental results. The spin-resolved photoemission data demonstrate the inadequacy of the Stoner model to the description of magnetism in rare earths.

48 citations


Cited by
More filters
Journal ArticleDOI
16 Nov 2006-Nature
TL;DR: In this article, it was shown that if in-plane homogeneous electric fields are applied across the zigzag-shaped edges of the graphene nanoribbons, their magnetic properties can be controlled by the external electric fields.
Abstract: Electrical current can be completely spin polarized in a class of materials known as half-metals, as a result of the coexistence of metallic nature for electrons with one spin orientation and insulating nature for electrons with the other. Such asymmetric electronic states for the different spins have been predicted for some ferromagnetic metals--for example, the Heusler compounds--and were first observed in a manganese perovskite. In view of the potential for use of this property in realizing spin-based electronics, substantial efforts have been made to search for half-metallic materials. However, organic materials have hardly been investigated in this context even though carbon-based nanostructures hold significant promise for future electronic devices. Here we predict half-metallicity in nanometre-scale graphene ribbons by using first-principles calculations. We show that this phenomenon is realizable if in-plane homogeneous electric fields are applied across the zigzag-shaped edges of the graphene nanoribbons, and that their magnetic properties can be controlled by the external electric fields. The results are not only of scientific interest in the interplay between electric fields and electronic spin degree of freedom in solids but may also open a new path to explore spintronics at the nanometre scale, based on graphene.

3,519 citations

Journal ArticleDOI
11 Aug 2011-Nature
TL;DR: To prove the potential of in-plane current switching for spintronic applications, this work constructs a reprogrammable magnetic switch that can be integrated into non-volatile memory and logic architectures.
Abstract: Modern computing technology is based on writing, storing and retrieving information encoded as magnetic bits. Although the giant magnetoresistance effect has improved the electrical read out of memory elements, magnetic writing remains the object of major research efforts. Despite several reports of methods to reverse the polarity of nanosized magnets by means of local electric fields and currents, the simple reversal of a high-coercivity, single-layer ferromagnet remains a challenge. Materials with large coercivity and perpendicular magnetic anisotropy represent the mainstay of data storage media, owing to their ability to retain a stable magnetization state over long periods of time and their amenability to miniaturization. However, the same anisotropy properties that make a material attractive for storage also make it hard to write to. Here we demonstrate switching of a perpendicularly magnetized cobalt dot driven by in-plane current injection at room temperature. Our device is composed of a thin cobalt layer with strong perpendicular anisotropy and Rashba interaction induced by asymmetric platinum and AlOx interface layers. The effective switching field is orthogonal to the direction of the magnetization and to the Rashba field. The symmetry of the switching field is consistent with the spin accumulation induced by the Rashba interaction and the spin-dependent mobility observed in non-magnetic semiconductors, as well as with the torque induced by the spin Hall effect in the platinum layer. Our measurements indicate that the switching efficiency increases with the magnetic anisotropy of the cobalt layer and the oxidation of the aluminium layer, which is uppermost, suggesting that the Rashba interaction has a key role in the reversal mechanism. To prove the potential of in-plane current switching for spintronic applications, we construct a reprogrammable magnetic switch that can be integrated into non-volatile memory and logic architectures. This device is simple, scalable and compatible with present-day magnetic recording technology.

2,099 citations

Journal ArticleDOI
29 Sep 2005-Nature
TL;DR: This work presents an autonomous ordering and assembly of atoms and molecules on atomically well-defined surfaces that combines ease of fabrication with exquisite control over the shape, composition and mesoscale organization of the surface structures formed.
Abstract: The fabrication methods of the microelectronics industry have been refined to produce ever smaller devices, but will soon reach their fundamental limits. A promising alternative route to even smaller functional systems with nanometre dimensions is the autonomous ordering and assembly of atoms and molecules on atomically well-defined surfaces. This approach combines ease of fabrication with exquisite control over the shape, composition and mesoscale organization of the surface structures formed. Once the mechanisms controlling the self-ordering phenomena are fully understood, the self-assembly and growth processes can be steered to create a wide range of surface nanostructures from metallic, semiconducting and molecular materials.

2,013 citations

Journal ArticleDOI
TL;DR: In this article, a review of the basic ideas and techniques of spectral density functional theory which are currently used in electronic structure calculations of strongly correlated materials where the one-dimensional electron description breaks down is presented.
Abstract: We present a review of the basic ideas and techniques of the spectral density functional theory which are currently used in electronic structure calculations of strongly{correlated materials where the one{electron description breaks down. We illustrate the method with several examples where interactions play a dominant role: systems near metal{insulator transition, systems near volume collapse transition, and systems with local moments.

1,921 citations

Journal Article
TL;DR: In this article, the authors demonstrate switching of a perpendicularly magnetized cobalt dot driven by in-plane current injection at room temperature, which is composed of a thin cobalt layer with strong perpendicular magnetic anisotropy and Rashba interaction induced by asymmetric platinum and AlOx interface layers.
Abstract: Modern computing technology is based on writing, storing and retrieving information encoded as magnetic bits. Although the giant magnetoresistance effect has improved the electrical read out of memory elements, magnetic writing remains the object of major research efforts. Despite several reports of methods to reverse the polarity of nanosized magnets by means of local electric fields and currents, the simple reversal of a high-coercivity, single-layer ferromagnet remains a challenge. Materials with large coercivity and perpendicular magnetic anisotropy represent the mainstay of data storage media, owing to their ability to retain a stable magnetization state over long periods of time and their amenability to miniaturization. However, the same anisotropy properties that make a material attractive for storage also make it hard to write to. Here we demonstrate switching of a perpendicularly magnetized cobalt dot driven by in-plane current injection at room temperature. Our device is composed of a thin cobalt layer with strong perpendicular anisotropy and Rashba interaction induced by asymmetric platinum and AlOx interface layers. The effective switching field is orthogonal to the direction of the magnetization and to the Rashba field. The symmetry of the switching field is consistent with the spin accumulation induced by the Rashba interaction and the spin-dependent mobility observed in non-magnetic semiconductors, as well as with the torque induced by the spin Hall effect in the platinum layer. Our measurements indicate that the switching efficiency increases with the magnetic anisotropy of the cobalt layer and the oxidation of the aluminium layer, which is uppermost, suggesting that the Rashba interaction has a key role in the reversal mechanism. To prove the potential of in-plane current switching for spintronic applications, we construct a reprogrammable magnetic switch that can be integrated into non-volatile memory and logic architectures. This device is simple, scalable and compatible with present-day magnetic recording technology.

1,692 citations