scispace - formally typeset
Search or ask a question
Author

A. Davis

Bio: A. Davis is an academic researcher from Harvard University. The author has contributed to research in topics: C9orf72 & Amyotrophic lateral sclerosis. The author has an hindex of 1, co-authored 1 publications receiving 2157 citations.

Papers
More filters
Journal ArticleDOI
27 Feb 2009-Science
TL;DR: Neuronal cytoplasmic protein aggregation and defective RNA metabolism thus appear to be common pathogenic mechanisms involved in ALS and possibly in other neurodegenerative disorders.
Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal degenerative motor neuron disorder Ten percent of cases are inherited; most involve unidentified genes We report here 13 mutations in the fused in sarcoma/translated in liposarcoma (FUS/TLS) gene on chromosome 16 that were specific for familial ALS The FUS/TLS protein binds to RNA, functions in diverse processes, and is normally located predominantly in the nucleus In contrast, the mutant forms of FUS/TLS accumulated in the cytoplasm of neurons, a pathology that is similar to that of the gene TAR DNA-binding protein 43 (TDP43), whose mutations also cause ALS Neuronal cytoplasmic protein aggregation and defective RNA metabolism thus appear to be common pathogenic mechanisms involved in ALS and possibly in other neurodegenerative disorders

2,387 citations


Cited by
More filters
Journal ArticleDOI
Alan E. Renton1, Elisa Majounie1, Adrian James Waite2, Javier Simón-Sánchez3, Javier Simón-Sánchez4, Sara Rollinson5, J. Raphael Gibbs1, J. Raphael Gibbs6, Jennifer C. Schymick1, Hannu Laaksovirta7, John C. van Swieten4, John C. van Swieten3, Liisa Myllykangas7, Hannu Kalimo7, Anders Paetau7, Yevgeniya Abramzon1, Anne M. Remes8, Alice Kaganovich1, Sonja W. Scholz9, Sonja W. Scholz10, Sonja W. Scholz1, Jamie Duckworth1, Jinhui Ding1, Daniel W. Harmer11, Dena G. Hernandez6, Dena G. Hernandez1, Janel O. Johnson1, Janel O. Johnson6, Kin Y. Mok6, Mina Ryten6, Danyah Trabzuni6, Rita Guerreiro6, Richard W. Orrell6, James Neal2, Alexandra Murray12, J. P. Pearson2, Iris E. Jansen3, David Sondervan3, Harro Seelaar4, Derek J. Blake2, Kate Young5, Nicola Halliwell5, Janis Bennion Callister5, Greg Toulson5, Anna Richardson5, Alexander Gerhard5, Julie S. Snowden5, David M. A. Mann5, David Neary5, Mike A. Nalls1, Terhi Peuralinna7, Lilja Jansson7, Veli-Matti Isoviita7, Anna-Lotta Kaivorinne8, Maarit Hölttä-Vuori7, Elina Ikonen7, Raimo Sulkava13, Michael Benatar14, Joanne Wuu14, Adriano Chiò15, Gabriella Restagno, Giuseppe Borghero16, Mario Sabatelli17, David Heckerman18, Ekaterina Rogaeva19, Lorne Zinman19, Jeffrey D. Rothstein9, Michael Sendtner20, Carsten Drepper20, Evan E. Eichler21, Can Alkan21, Ziedulla Abdullaev1, Svetlana Pack1, Amalia Dutra1, Evgenia Pak1, John Hardy6, Andrew B. Singleton1, Nigel Williams2, Peter Heutink3, Stuart Pickering-Brown5, Huw R. Morris22, Huw R. Morris12, Huw R. Morris2, Pentti J. Tienari7, Bryan J. Traynor1, Bryan J. Traynor9 
20 Oct 2011-Neuron
TL;DR: The chromosome 9p21 amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) locus contains one of the last major unidentified autosomal-dominant genes underlying these common neurodegenerative diseases, and a large hexanucleotide repeat expansion in the first intron of C9ORF72 is shown.

3,784 citations

Journal ArticleDOI
19 Mar 2010-Cell
TL;DR: There is evidence for a remarkable convergence in the mechanisms responsible for the sensing, transduction, and amplification of inflammatory processes that result in the production of neurotoxic mediators in neurodegenerative diseases.

2,838 citations

Journal ArticleDOI
27 Aug 2015-Cell
TL;DR: It is proposed that liquid-like compartments carry the trade-off between functionality and risk of aggregation and that aberrant phase transitions within liquid- like compartments lie at the heart of ALS and, presumably, other age-related diseases.

1,988 citations

Journal ArticleDOI
24 Sep 2015-Cell
TL;DR: It is demonstrated that the disease-related RBP hnRNPA1 undergoes liquid-liquid phase separation (LLPS) into protein-rich droplets mediated by a low complexity sequence domain (LCD), and suggested that LCD-mediated LLPS contributes to the assembly of stress granules and their liquid properties.

1,947 citations