scispace - formally typeset
Search or ask a question
Author

A.E. Martin

Bio: A.E. Martin is an academic researcher. The author has contributed to research in topics: Diffractometer & Crystallinity. The author has an hindex of 1, co-authored 1 publications receiving 5009 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an empirical method for determining the crystallinity of native cellulose was studied with an x-ray diffractometer using the focusing and transmission techniques, and the influence of fluctuations in the primary radiation and in counting and recording processes have been determined.
Abstract: An empirical method for determining the crystallinity of native cellulose was studied with an x-ray diffractometer using the focusing and transmission techniques. The influence of fluctuations in the primary radiation and in the counting and recording processes have been determined. The intensity of the 002 interference and the amor phous scatter at 2θ = 18° was measured. The percent crystalline material in the total cellulose was expressed by an x-ray "crystallinity index." This was done for cotton cellulose decrystallized with aqueous solutions containing from 70% to nominally 100% ethylamine. The x-ray "crystallinity index" was correlated with acid hydrolysis crys tallinity, moisture regain, density, leveling-off degree of polymerization values, and infrared absorbance values for each sample. The results indicate that the crystallinity index is a time-saving empirical measure of relative crystallinity. The precision of the crystallinity index in terms of the several crystallinity criteria is given. Bas...

6,189 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Four different techniques incorporating X-ray diffraction and solid-state 13C nuclear magnetic resonance (NMR) were compared using eight different cellulose preparations and it was found that the simplest method, which is also the most widely used, and which involves measurement of just two heights in the X- Ray diffractogram, produced significantly higher crystallinity values than did the other methods.
Abstract: Although measurements of crystallinity index (CI) have a long history, it has been found that CI varies significantly depending on the choice of measurement method. In this study, four different techniques incorporating X-ray diffraction and solid-state 13C nuclear magnetic resonance (NMR) were compared using eight different cellulose preparations. We found that the simplest method, which is also the most widely used, and which involves measurement of just two heights in the X-ray diffractogram, produced significantly higher crystallinity values than did the other methods. Data in the literature for the cellulose preparation used (Avicel PH-101) support this observation. We believe that the alternative X-ray diffraction (XRD) and NMR methods presented here, which consider the contributions from amorphous and crystalline cellulose to the entire XRD and NMR spectra, provide a more accurate measure of the crystallinity of cellulose. Although celluloses having a high amorphous content are usually more easily digested by enzymes, it is unclear, based on studies published in the literature, whether CI actually provides a clear indication of the digestibility of a cellulose sample. Cellulose accessibility should be affected by crystallinity, but is also likely to be affected by several other parameters, such as lignin/hemicellulose contents and distribution, porosity, and particle size. Given the methodological dependency of cellulose CI values and the complex nature of cellulase interactions with amorphous and crystalline celluloses, we caution against trying to correlate relatively small changes in CI with changes in cellulose digestibility. In addition, the prediction of cellulase performance based on low levels of cellulose conversion may not include sufficient digestion of the crystalline component to be meaningful.

2,522 citations

Journal ArticleDOI
TL;DR: In this paper, powder diffraction patterns from cellulose Iα, Iβ, II, IIII, and IIIII were calculated based on the published atomic coordinates and unit cell dimensions contained in modified "crystal information files" that are supplied in the Supplementary Information.
Abstract: Cellulose samples are routinely analyzed by X-ray diffraction to determine their crystal type (polymorph) and crystallinity. However, the connection is seldom made between those efforts and the crystal structures of cellulose that have been proposed with synchrotron X-radiation and neutron diffraction over the past decade or so. In part, this desirable connection is thwarted by the use of different conventions for description of the unit cells of the crystal structures. In the present work, powder diffraction patterns from cellulose Iα, Iβ, II, IIII, and IIIII were calculated based on the published atomic coordinates and unit cell dimensions contained in modified “crystal information files” (.cif) that are supplied in the Supplementary Information. The calculations used peak widths at half maximum height of both 0.1 and 1.5° 2θ, providing both highly resolved indications of the contributions of each contributing reflection to the observable diffraction peaks as well as intensity profiles that more closely resemble those from practical cellulose samples. Miller indices are shown for each contributing peak that conform to the convention with c as the fiber axis, a right-handed relationship among the axes and the length of a < b. Adoption of this convention, already used for crystal structure determinations, is also urged for routine studies of polymorph and crystallinity. The calculated patterns are shown with and without preferred orientation along the fiber axis. Diffraction intensities, output by the Mercury program from the Cambridge Crystallographic Data Centre, have several uses including comparisons with experimental data. Calculated intensities from different polymorphs can be added in varying proportions using a spreadsheet program to simulate patterns such as those from partially mercerized cellulose or various composites.

1,825 citations

Journal ArticleDOI
TL;DR: It is proposed to focus on the barrier properties of MFC used in films, in nanocomposites, or in paper coating to reduce the high energy consumption and produce new types of M FC materials on an industrial scale.

1,423 citations

Journal ArticleDOI
TL;DR: An empirical model was identified that describes the roles of lignin content, acetyl contents, and crystallinity indices in enzymatic hydrolysis and the digestibility of several lime-treated biomass samples agreed with the empirical model.
Abstract: Poplar wood was treated with peracetic acid, KOH, and ball milling to produce 147 model lignocelluloses with a broad spectrum of lignin contents, acetyl contents, and crystallinity indices (CrIs), respectively. An empirical model was identified that describes the roles of these three properties in enzymatic hydrolysis. Lignin content and CrI have the greatest impact on biomass digestibility, whereas acetyl content has a minor impact. The digestibility of several lime-treated biomass samples agreed with the empirical model. Lime treatment removes all acetyl groups and a moderate amount of lignin and increases CrI slightly; lignin removal is the dominant benefit from lime treatment.

1,259 citations

Journal ArticleDOI
TL;DR: The goal of this study is to review the fundamental structures and chemistries of wood and wood-derived materials, which are essential for a wide range of existing and new enabling technologies.
Abstract: With the arising of global climate change and resource shortage, in recent years, increased attention has been paid to environmentally friendly materials. Trees are sustainable and renewable materials, which give us shelter and oxygen and remove carbon dioxide from the atmosphere. Trees are a primary resource that human society depends upon every day, for example, homes, heating, furniture, and aircraft. Wood from trees gives us paper, cardboard, and medical supplies, thus impacting our homes, school, work, and play. All of the above-mentioned applications have been well developed over the past thousands of years. However, trees and wood have much more to offer us as advanced materials, impacting emerging high-tech fields, such as bioengineering, flexible electronics, and clean energy. Wood naturally has a hierarchical structure, composed of well-oriented microfibers and tracheids for water, ion, and oxygen transportation during metabolism. At higher magnification, the walls of fiber cells have an interes...

1,031 citations