scispace - formally typeset
Search or ask a question
Author

A. F. Barbosa

Bio: A. F. Barbosa is an academic researcher. The author has contributed to research in topics: Data acquisition & Data management. The author has an hindex of 3, co-authored 3 publications receiving 2111 citations.

Papers
More filters
Journal ArticleDOI
A. A. Alves, L. M. Andrade Filho1, A. F. Barbosa, Ignacio Bediaga  +886 moreInstitutions (64)
TL;DR: The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva).
Abstract: The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The initial configuration and expected performance of the detector and associated systems, as established by test beam measurements and simulation studies, is described.

2,286 citations


Cited by
More filters
Book
Georges Aad1, E. Abat2, Jalal Abdallah3, Jalal Abdallah4  +3029 moreInstitutions (164)
23 Feb 2020
TL;DR: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper, where a brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.
Abstract: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

3,111 citations

Journal ArticleDOI
A. A. Alves, L. M. Andrade Filho1, A. F. Barbosa, Ignacio Bediaga  +886 moreInstitutions (64)
TL;DR: The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva).
Abstract: The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The initial configuration and expected performance of the detector and associated systems, as established by test beam measurements and simulation studies, is described.

2,286 citations

Journal ArticleDOI
23 Dec 2011
TL;DR: The Gauss simulation application as mentioned in this paper is based on the Gaudi framework and on experiment basic components such as the Event Model and Detector Description, which is used both directly by users and in massive central productions on the grid.
Abstract: The LHCb simulation application, Gauss, is based on the Gaudi framework and on experiment basic components such as the Event Model and Detector Description. Gauss also depends on external libraries for the generation of the primary events (PYTHIA 6, EvtGen, etc.) and on GEANT4 for particle transport in the experimental setup. The application supports the production of different types of events from minimum bias to B physics signals and particle guns. It is used for purely generator-level studies as well as full simulations. Gauss is used both directly by users and in massive central productions on the grid. The design and implementation of the application and its evolution due to evolving requirements will be described as in the case of the recently adopted Python-based configuration or the possibility of taking into account detectors conditions via a Simulation Conditions database. The challenge of supporting at the same time the flexibililty needed for the different tasks for which it is used, from evaluation of physics reach to background modeling, together with the stability and reliabilty of the code will also be described.

1,085 citations

Journal ArticleDOI
TL;DR: Recently, the LHCb Collaboration discovered two hidden-charm pentaquark states, which are also beyond the quark model as discussed by the authors, and investigated various theoretical interpretations of these candidates of the multiquark states.

1,083 citations

Journal ArticleDOI
Roel Aaij, Bernardo Adeva1, Marco Adinolfi2, A. Affolder3  +698 moreInstitutions (50)
TL;DR: The value of the ratio of branching fractions for the dilepton invariant mass squared range 1 < q(2) < 6 GeV(2)/c(4) is measured to be 0.745(-0.074)(+0.090)(stat) ± 0.036(syst).
Abstract: A measurement of the ratio of the branching fractions of the B+→K+μ+μ− and B+→K+e+e− decays is presented using proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb−1, recorded with the LHCb experiment at center-of-mass energies of 7 and 8 TeV. The value of the ratio of branching fractions for the dilepton invariant mass squared range 1

1,017 citations