scispace - formally typeset
Search or ask a question
Author

A. Fernandez-Pañella

Bio: A. Fernandez-Pañella is an academic researcher from Lawrence Livermore National Laboratory. The author has contributed to research in topics: Warm dense matter & Shock (mechanics). The author has an hindex of 9, co-authored 15 publications receiving 255 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, high-powered lasers at the National Ignition Facility were used to ramp compress iron over nanosecond timescales to 1.4 TPA (14 million atmospheres), a pressure four times higher than for previous static compression data.
Abstract: The recent discovery of thousands of planets outside our Solar System raises fundamental questions about the variety of planetary types and their corresponding interior structures and dynamics. To better understand these objects, there is a strong need to constrain material properties at the extreme pressures found within planetary interiors1,2. Here we used high-powered lasers at the National Ignition Facility to ramp compress iron over nanosecond timescales to 1.4 TPa (14 million atmospheres)—a pressure four times higher than for previous static compression data. A Lagrangian sound-speed analysis was used to determine pressure, density and sound speed along a continuous isentropic compression path. Our peak pressures are comparable to those predicted at the centre of a terrestrial-type exoplanet of three to four Earth masses 3 , representing the first absolute equation of state measurements for iron at such conditions. These results provide an experiment-based mass–radius relationship for a hypothetical pure iron planet that can be used to evaluate plausible compositional space for large, rocky exoplanets. Iron has been ramp compressed to the pressures it would experience in the core of a 3–4 Earth-mass terrestrial exoplanet, providing experimental constraints on the mass–radius relationship for a hypothetical pure iron planet.

78 citations

Journal ArticleDOI
TL;DR: A detailed review of the state-of-the-art EOS models for inertial confinement fusion (ICF) implosions can be found in this paper, where the authors present a detailed comparison with experiments.

65 citations

Journal ArticleDOI
TL;DR: The results suggest a triple point on the Au phase diagram that lies very close to the principal shock Hugoniot near ∼220 GPa, which is in contrast to density functional theory and first principles calculations of the high-pressure phases of Au that predict a variety of fcc-like structures with different stacking arrangements at intermediate pressures.
Abstract: We combined laser shock compression with in situ x-ray diffraction to probe the crystallographic state of gold (Au) on its principal shock Hugoniot. Au has long been recognized as an important calibration standard in diamond anvil cell experiments due to the stability of its face-centered cubic (fcc) structure to extremely high pressures ($P\text{ }g600\text{ }\text{ }\mathrm{GPa}$ at 300 K). This is in contrast to density functional theory and first principles calculations of the high-pressure phases of Au that predict a variety of fcc-like structures with different stacking arrangements at intermediate pressures. In this Letter, we probe high-pressure and high-temperature conditions on the shock Hugoniot and observe fcc Au at 169 GPa and the first evidence of body-centered cubic (bcc) Au at 223 GPa. Upon further compression, the bcc phase is observed in coexistence with liquid scattering as the Hugoniot crosses the Au melt curve before 322 GPa. The results suggest a triple point on the Au phase diagram that lies very close to the principal shock Hugoniot near $\ensuremath{\sim}220\text{ }\text{ }\mathrm{GPa}$.

59 citations

Journal ArticleDOI
TL;DR: Copper samples were ramp compressed to peak pressures of 2.30 TPa and densities of nearly 30 g/cc, providing fundamental information regarding the compressibility and phase of copper at pressures more than 5 times greater than previously explored, and both density-functional theory and the stabilized jellium model reproduces the data well.
Abstract: Ramp compression along a low-temperature adiabat offers a unique avenue to explore the physical properties of materials at the highest densities of their solid form, a region inaccessible by single shock compression. Using the National Ignition Facility and OMEGA laser facilities, copper samples were ramp compressed to peak pressures of 2.30 TPa and densities of nearly $30\text{ }\text{ }\mathrm{g}/\mathrm{cc}$, providing fundamental information regarding the compressibility and phase of copper at pressures more than 5 times greater than previously explored. Through x-ray diffraction measurements, we find that the ambient face-centered-cubic structure is preserved up to 1.15 TPa. The ramp compression equation-of-state measurements shows that there are no discontinuities in sound velocities up to 2.30 TPa, suggesting this phase is likely stable up to the peak pressures measured, as predicted by first-principal calculations. The high precision of these quasiabsolute measurements enables us to provide essential benchmarks for advanced computational studies on the behavior of dense monoatomic materials under extreme conditions that constitute a stringent test for solid-state quantum theory. We find that both density-functional theory and the stabilized jellium model, which assumes that the ionic structure can be replaced by an ionic charge distribution by constant positive-charge background, reproduces our data well. Further, our data could serve to establish new international secondary scales of pressure in the terapascal range that is becoming experimentally accessible with advanced static and dynamic compression techniques.

38 citations

Journal ArticleDOI
04 Jun 2021-Science
TL;DR: In this paper, the authors derived two experimentally constrained pressure standards to terapascal conditions for gold and platinum and used them to obtain quasi-absolute, high-precision, pressure-density equation-of-state data.
Abstract: New techniques are advancing the frontier of high-pressure physics beyond 1 terapascal, leading to new discoveries and offering stringent tests for condensed-matter theory and advanced numerical methods. However, the ability to absolutely determine the pressure state remains challenging, and well-calibrated pressure-density reference materials are required. We conducted shockless dynamic compression experiments at the National Ignition Facility and the Z machine to obtain quasi-absolute, high-precision, pressure-density equation-of-state data for gold and platinum. We derived two experimentally constrained pressure standards to terapascal conditions. Establishing accurate experimental determinations of extreme pressure will facilitate better connections between experiments and theory, paving the way toward improving our understanding of material response to these extreme conditions.

38 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a growth model and Monte Carlo simulations are used to demonstrate that many intermediate-size exoplanets are water worlds, which matches the second peak of the exoplanet radius bimodal distribution.
Abstract: The radii and orbital periods of 4,000+ confirmed/candidate exoplanets have been precisely measured by the Kepler mission. The radii show a bimodal distribution, with two peaks corresponding to smaller planets (likely rocky) and larger intermediate-size planets, respectively. While only the masses of the planets orbiting the brightest stars can be determined by ground-based spectroscopic observations, these observations allow calculation of their average densities placing constraints on the bulk compositions and internal structures. However, an important question about the composition of planets ranging from 2 to 4 Earth radii (R⊕) still remains. They may either have a rocky core enveloped in a H2-He gaseous envelope (gas dwarfs) or contain a significant amount of multicomponent, H2O-dominated ices/fluids (water worlds). Planets in the mass range of 10-15 M⊕, if half-ice and half-rock by mass, have radii of 2.5 R⊕, which exactly match the second peak of the exoplanet radius bimodal distribution. Any planet in the 2- to 4-R⊕ range requires a gas envelope of at most a few mass percentage points, regardless of the core composition. To resolve the ambiguity of internal compositions, we use a growth model and conduct Monte Carlo simulations to demonstrate that many intermediate-size planets are "water worlds."

331 citations

Journal ArticleDOI
TL;DR: For the first time, thorough benchmarks of important approximation schemes regarding various quantities such as different energies, in particular the exchange-correlation free energy, and the static structure factor are possible.

202 citations

Journal ArticleDOI
TL;DR: By closing the gap to the ground state and by performing extensive QMC simulations for different spin polarizations, the first completely ab initio exchange-correlation free energy functional is obtained; the accuracy achieved is an unprecedented ∼0.3%.
Abstract: In a recent Letter [T. Dornheim et al., Phys. Rev. Lett. 117, 156403 (2016)PRLTAO0031-900710.1103/PhysRevLett.117.156403], we presented the first quantum Monte Carlo (QMC) results for the warm dense electron gas in the thermodynamic limit. However, a complete parametrization of the exchange-correlation free energy with respect to density, temperature, and spin polarization remained out of reach due to the absence of (i) accurate QMC results below θ=k_{B}T/E_{F}=0.5 and (ii) QMC results for spin polarizations different from the paramagnetic case. Here we overcome both remaining limitations. By closing the gap to the ground state and by performing extensive QMC simulations for different spin polarizations, we are able to obtain the first completely ab initio exchange-correlation free energy functional; the accuracy achieved is an unprecedented ∼0.3%. This also allows us to quantify the accuracy and systematic errors of various previous approximate functionals.

170 citations

01 Mar 2000
TL;DR: In this article, an attempt is made to explain the physical process present that will explain the presence of these energetic protons, as well as explain the number, energy, and angular spread of the protons observed in experiment.
Abstract: An explanation for the energetic ions observed in the PetaWatt experiments is presented. In solid target experiments with focused intensities exceeding 1020 W/cm2, high-energy electron generation, hard bremsstrahlung, and energetic protons have been observed on the backside of the target. In this report, an attempt is made to explain the physical process present that will explain the presence of these energetic protons, as well as explain the number, energy, and angular spread of the protons observed in experiment. In particular, we hypothesize that hot electrons produced on the front of the target are sent through to the back off the target, where they ionize the hydrogen layer there. These ions are then accelerated by the hot electron cloud, to tens of MeV energies in distances of order tens of μm, whereupon they end up being detected in the radiographic and spectrographic detectors.

168 citations