scispace - formally typeset
Search or ask a question
Author

A. Furukawa

Bio: A. Furukawa is an academic researcher from University of Tokyo. The author has contributed to research in topics: Dehydroepiandrosterone & Pregnenolone. The author has an hindex of 5, co-authored 6 publications receiving 1089 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Results imply that 17beta-estradiol is synthesized by P45017alpha and P450 aromatase localized in hippocampal neurons from endogenous cholesterol, and may be regulated by a glutamate-mediated synaptic communication that evokes Ca(2+) signals.
Abstract: In adult mammalian brain, occurrence of the synthesis of estradiol from endogenous cholesterol has been doubted because of the inability to detect dehydroepiandrosterone synthase, P45017α. In adult male rat hippocampal formation, significant localization was demonstrated for both cytochromes P45017α and P450 aromatase, in pyramidal neurons in the CA1–CA3 regions, as well as in the granule cells in the dentate gyrus, by means of immunohistochemical staining of slices. Only a weak immunoreaction of these P450s was observed in astrocytes and oligodendrocytes. ImmunoGold electron microscopy revealed that P45017α and P450 aromatase were localized in pre- and postsynaptic compartments as well as in the endoplasmic reticulum in principal neurons. The expression of these cytochromes was further verified by using Western blot analysis and RT-PCR. Stimulation of hippocampal neurons with N-methyl-d-aspartate induced a significant net production of estradiol. Analysis of radioactive metabolites demonstrated the conversion from [3H]pregnenolone to [3H]estradiol through dehydroepiandrosterone and testosterone. This activity was abolished by the application of specific inhibitors of cytochrome P450s. Interestingly, estradiol was not significantly converted to other steroid metabolites. Taken together with our previous finding of a P450scc-containing neuronal system for pregnenolone synthesis, these results imply that 17β-estradiol is synthesized by P45017α and P450 aromatase localized in hippocampal neurons from endogenous cholesterol. This synthesis may be regulated by a glutamate-mediated synaptic communication that evokes Ca2+ signals.

647 citations

Journal ArticleDOI
TL;DR: Two types of independent synaptic plasticity, long‐term depression and spinogenesis, were investigated, in response to 17β‐estradiol and agonists of estrogen receptors using hippocampal slices from adult male rats, and it was demonstrated that estradiol rapidly enhanced LTD not only in CA1 but also in CA3 and dentate gyrus.
Abstract: Rapid modulation of hippocampal synaptic plasticity by estrogen has long been a hot topic, but analysis of molecular mechanisms via synaptic estrogen receptors has been seriously difficult. Here, two types of independent synaptic plasticity, long-term depression (LTD) and spinogenesis, were investigated, in response to 17beta-estradiol and agonists of estrogen receptors using hippocampal slices from adult male rats. Multi-electrode investigations demonstrated that estradiol rapidly enhanced LTD not only in CA1 but also in CA3 and dentate gyrus. Dendritic spine morphology analysis demonstrated that the density of thin type spines was selectively increased in CA1 pyramidal neurons within 2 h after application of 1 nm estradiol. This enhancement of spinogenesis was completely suppressed by mitogen-activated protein (MAP) kinase inhibitor. Only the estrogen receptor (ER) alpha agonist, (propyl-pyrazole-trinyl)tris-phenol (PPT), induced the same enhancing effect as estradiol on both LTD and spinogenesis in the CA1. The ERbeta agonist, (4-hydroxyphenyl)-propionitrile (DPN), suppressed LTD and did not affect spinogenesis. Because the mode of synaptic modulations by estradiol was mostly the same as that by the ERalpha agonist, a search was made for synaptic ERalpha using purified RC-19 antibody qualified using ERalpha knockout (KO) mice. Localization of ERalpha in spines of principal glutamatergic neurons was demonstrated using immunogold electron microscopy and immunohistochemistry. ERalpha was also located in nuclei, cytoplasm and presynapses.

211 citations

Journal ArticleDOI
TL;DR: Hippocampal pyramidal neurons and granule neurons of adult male rats are equipped with a complete machinery for the synthesis of pregnenolone, dehydroepiandrosterone, 17beta-estradiol and testosterone as well as their sulfate esters, promising neuromodulators that may either activate or inactivate neuron-neuron communication, thereby mediating learning and memory in the hippocampus.

137 citations

Journal ArticleDOI
TL;DR: Hippocampal pyramidal neurons and granule neurons of adult male rats are equipped with a complete machinery for the synthesis of pregnenolone, dehydroepiandrosterone, testosterone, dihydrotestosterone and 17beta-estradiol, which is particularly important because estradiol rapidly modulates neuronal synaptic transmission such as long-term potentiation via synaptic estrogen receptors.

112 citations

Journal ArticleDOI
TL;DR: Synaptic expression of P450(17α), P450arom, and estrogen receptors suggests “synaptocrine” mechanisms of brain steroids, which are synthesized at synapses and act as synaptic modulators.
Abstract: In the hippocampus, the center for learning and memory, cytochrome P450s (P450scc, P450(17alpha), and P450arom) as well as 17beta-, 3beta-hydroxysteroid dehydrogenases, and 5alpha-reductase participate in the synthesis of brain steroids from endogenous cholesterol. These brain steroids include pregnenolone, dehydroepiandrosterone, testosterone, dihydrotestosterone, and 17beta-estradiol. Both estrogens and androgens are synthesized in the adult male hippocampal neurons. Although the expression levels of steroidogenic enzymes are as low as 1/200 to 1/50,000 of those in testis or ovary, the levels of synthesized steroids are sufficient for the local usage within small neurons (i.e., intracrine system). This intracrine system contrasts with the endocrine system in which high expression levels of steroidogenic enzymes are necessary in endocrine organs in order to supply steroids to many other organs via blood circulation. Endogenous synthesis of sex steroids in the hypothalamus is also discussed. Rapid modulation by estrogens and xenoestrogens is discussed concerning synaptic plasticity such as the long-term potentiation, the long-term depression, or spinogenesis. Synaptic expression of P450(17alpha), P450arom, and estrogen receptors suggests "synaptocrine" mechanisms of brain steroids, which are synthesized at synapses and act as synaptic modulators.

34 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Understanding steroidogenesis is of fundamental importance to understanding disorders of sexual differentiation, reproduction, fertility, hypertension, obesity, and physiological homeostasis.
Abstract: Steroidogenesis entails processes by which cholesterol is converted to biologically active steroid hormones. Whereas most endocrine texts discuss adrenal, ovarian, testicular, placental, and other steroidogenic processes in a gland-specific fashion, steroidogenesis is better understood as a single process that is repeated in each gland with cell-type-specific variations on a single theme. Thus, understanding steroidogenesis is rooted in an understanding of the biochemistry of the various steroidogenic enzymes and cofactors and the genes that encode them. The first and rate-limiting step in steroidogenesis is the conversion of cholesterol to pregnenolone by a single enzyme, P450scc (CYP11A1), but this enzymatically complex step is subject to multiple regulatory mechanisms, yielding finely tuned quantitative regulation. Qualitative regulation determining the type of steroid to be produced is mediated by many enzymes and cofactors. Steroidogenic enzymes fall into two groups: cytochrome P450 enzymes and hydroxysteroid dehydrogenases. A cytochrome P450 may be either type 1 (in mitochondria) or type 2 (in endoplasmic reticulum), and a hydroxysteroid dehydrogenase may belong to either the aldo-keto reductase or short-chain dehydrogenase/reductase families. The activities of these enzymes are modulated by posttranslational modifications and by cofactors, especially electron-donating redox partners. The elucidation of the precise roles of these various enzymes and cofactors has been greatly facilitated by identifying the genetic bases of rare disorders of steroidogenesis. Some enzymes not principally involved in steroidogenesis may also catalyze extraglandular steroidogenesis, modulating the phenotype expected to result from some mutations. Understanding steroidogenesis is of fundamental importance to understanding disorders of sexual differentiation, reproduction, fertility, hypertension, obesity, and physiological homeostasis.

1,665 citations

Journal ArticleDOI
TL;DR: Evidence on sex differences in brain structure, chemistry, and function using imaging methodologies in mentally healthy individuals is evaluated to delineate the pathophysiological mechanisms underlyingsex differences in neuropsychiatric disorders and to guide the development of sex-specific treatments for these devastating brain disorders.

866 citations

Journal ArticleDOI
01 Nov 2007-Pain
TL;DR: In this article, members of the Sex, Gender and Pain Special Interest Group of the International Association for the Study of Pain met to discuss the following: (1) what is known about sex and gender differences in pain and analgesia; (2) what are the "best practice" guidelines for pain research with respect to sex this article.
Abstract: In September 2006, members of the Sex, Gender and Pain Special Interest Group of the International Association for the Study of Pain met to discuss the following: (1) what is known about sex and gender differences in pain and analgesia; (2) what are the "best practice" guidelines for pain research with respect to sex and gender; and (3) what are the crucial questions to address in the near future? The resulting consensus presented herein includes input from basic science, clinical and psychosocial pain researchers, as well as from recognized experts in sexual differentiation and reproductive endocrinology. We intend this document to serve as a utilitarian and thought-provoking guide for future research on sex and gender differences in pain and analgesia, both for those currently working in this field as well as those still wondering, "Do I really need to study females?"

848 citations

01 Jan 2007
TL;DR: This document is intended to serve as a utilitarian and thought-provoking guide for future research on sex and gender differences in pain and analgesia, both for those currently working in this field as well as those still wondering, "Do I really need to study females?"

804 citations

Journal ArticleDOI
TL;DR: The introduction of endocrine disrupting compounds into the environment that mimic or alter the actions of estradiol has generated considerable concern, and the developing brain is a particularly sensitive target.
Abstract: Estradiol is the most potent and ubiquitous member of a class of steroid hormones called estrogens. Fetuses and newborns are exposed to estradiol derived from their mother, their own gonads, and synthesized locally in their brains. Receptors for estradiol are nuclear transcription factors that regulate gene expression but also have actions at the membrane, including activation of signal transduction pathways. The developing brain expresses high levels of receptors for estradiol. The actions of estradiol on developing brain are generally permanent and range from establishment of sex differences to pervasive trophic and neuroprotective effects. Cellular end points mediated by estradiol include the following: 1) apoptosis, with estradiol preventing it in some regions but promoting it in others; 2) synaptogenesis, again estradiol promotes in some regions and inhibits in others; and 3) morphometry of neurons and astrocytes. Estradiol also impacts cellular physiology by modulating calcium handling, immediate-early-gene expression, and kinase activity. The specific mechanisms of estradiol action permanently impacting the brain are regionally specific and often involve neuronal/glial cross-talk. The introduction of endocrine disrupting compounds into the environment that mimic or alter the actions of estradiol has generated considerable concern, and the developing brain is a particularly sensitive target. Prostaglandins, glutamate, GABA, granulin, and focal adhesion kinase are among the signaling molecules co-opted by estradiol to differentiate male from female brains, but much remains to be learned. Only by understanding completely the mechanisms and impact of estradiol action on the developing brain can we also understand when these processes go awry.

759 citations