scispace - formally typeset
Search or ask a question
Author

A. G. Hawkes

Bio: A. G. Hawkes is an academic researcher. The author has an hindex of 1, co-authored 1 publications receiving 1102 citations.

Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: Fractional kinetic equations of the diffusion, diffusion-advection, and Fokker-Planck type are presented as a useful approach for the description of transport dynamics in complex systems which are governed by anomalous diffusion and non-exponential relaxation patterns.

7,412 citations

Journal ArticleDOI
Roger Ratcliff1
TL;DR: A theory of memory retrieval is developed and is shown to apply over a range of experimental paradigms, and it is noted that neural network models can be interfaced to the retrieval theory with little difficulty and that semantic memory models may benefit from such a retrieval scheme.
Abstract: A theory of memory retrieval is developed and is shown to apply over a range of experimental paradigms. Access to memory traces is viewed in terms of a resonance metaphor. The probe item evokes the search set on the basis of probe-memory item relatedness, just as a ringing tuning fork evokes sympathetic vibrations in other tuning forks. Evidence is accumulated in parallel from each probe-memory item comparison, and each comparison is modeled by a continuous random walk process. In item recognition, the decision process is self-terminating on matching comparisons and exhaustive on nonmatching comparisons. The mathematical model produces predictions about accuracy, mean reaction time, error latency, and reaction time distributions that are in good accord with experimental data. The theory is applied to four item recognition paradigms (Sternberg, prememorized list, study-test, and continuous) and to speed-accuracy paradigms; results are found to provide a basis for comparison of these paradigms. It is noted that neural network models can be interfaced to the retrieval theory with little difficulty and that semantic memory models may benefit from such a retrieval scheme.

3,856 citations

Journal ArticleDOI
TL;DR: Turnover is generated by the existence of a nondegenerate distribution of the worker's productivity across different jobs as discussed by the authors, caused by the assumed variation in the quality of the employee-employer match.
Abstract: A long-run equilibrium theory of turnover is presented and is shown to explain the important regularities that have been observed by empirical investigators. A worker's productivity in a particular job is not known ex ante and becomes known more precisely as the worker's job tenure increases. Turnover is generated by the existence of a nondegenerate distribution of the worker's productivity across different. The nondegeneracy is caused by the assumed variation in the quality of the worker-employer match.

3,238 citations

Journal ArticleDOI
TL;DR: The aim of this work is to provide the readers with the know how for the application of recurrence plot based methods in their own field of research, and detail the analysis of data and indicate possible difficulties and pitfalls.

2,993 citations

Book
01 Jan 1989
TL;DR: In this article, a deterministic model of optimal growth is proposed, and a stochastic model is proposed for optimal growth with linear utility and linear systems and linear approximations.
Abstract: I. THE RECURSIVE APPROACH 1. Introduction 2. An Overview 2.1 A Deterministic Model of Optimal Growth 2.2 A Stochastic Model of Optimal Growth 2.3 Competitive Equilibrium Growth 2.4 Conclusions and Plans II. DETERMINISTIC MODELS 3. Mathematical Preliminaries 3.1 Metric Spaces and Normed Vector Spaces 3.2 The Contraction Mapping Theorem 3.3 The Theorem of the Maximum 4. Dynamic Programming under Certainty 4.1 The Principle of Optimality 4.2 Bounded Returns 4.3 Constant Returns to Scale 4.4 Unbounded Returns 4.5 Euler Equations 5. Applications of Dynamic Programming under Certainty 5.1 The One-Sector Model of Optimal Growth 5.2 A "Cake-Eating" Problem 5.3 Optimal Growth with Linear Utility 5.4 Growth with Technical Progress 5.5 A Tree-Cutting Problem 5.6 Learning by Doing 5.7 Human Capital Accumulation 5.8 Growth with Human Capital 5.9 Investment with Convex Costs 5.10 Investment with Constant Returns 5.11 Recursive Preferences 5.12 Theory of the Consumer with Recursive Preferences 5.13 A Pareto Problem with Recursive Preferences 5.14 An (s, S) Inventory Problem 5.15 The Inventory Problem in Continuous Time 5.16 A Seller with Unknown Demand 5.17 A Consumption-Savings Problem 6. Deterministic Dynamics 6.1 One-Dimensional Examples 6.2 Global Stability: Liapounov Functions 6.3 Linear Systems and Linear Approximations 6.4 Euler Equations 6.5 Applications III. STOCHASTIC MODELS 7. Measure Theory and Integration 7.1 Measurable Spaces 7.2 Measures 7.3 Measurable Functions 7.4 Integration 7.5 Product Spaces 7.6 The Monotone Class Lemma

2,991 citations