scispace - formally typeset
Search or ask a question
Author

A. G. W. Cameron

Bio: A. G. W. Cameron is an academic researcher from Harvard University. The author has contributed to research in topics: Formation and evolution of the Solar System & Stellar evolution. The author has an hindex of 45, co-authored 123 publications receiving 10111 citations. Previous affiliations of A. G. W. Cameron include Yeshiva University & California Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: At low excitation energies a constant nuclear temperature representation of nuclear-level densities was used, and at high excitation energy the regular Fermi gas formula was adopted as mentioned in this paper.
Abstract: At low excitation energies a "constant nuclear temperature" representation of nuclear-level densities is used, and at high excitation energies the regular Fermi gas formula is adopted. A method is ...

1,693 citations

Journal ArticleDOI
TL;DR: The present status of abundance information for elements in meteorites and in the Sun is reviewed, and a new table of abundances of the elements, which should be characteristic of the primitive solar nebula, is compiled and presented.
Abstract: The present status of abundance information for elements in meteorites and in the Sun is reviewed, and a new table of abundances of the elements, which should be characteristic of the primitive solar nebula, is compiled and presented. Special attention is called to the elemental abundances in the silicon-to-calcium region, where many of the abundances are rather poorly determined, and where these abundances have an impact on theories of nucleosynthesis of the elements. To each elemental isotope is assigned a mechanism of nucleosynthesis which may have been responsible for production of most of that isotope, and brief comments are made concerning the present status of understanding of the different mechanisms of nucleosynthesis.

825 citations

Journal ArticleDOI
01 Aug 1991-Icarus
TL;DR: In this article, a series of three-dimensional numerical simulations of the collision between the earth and an object of about 1/10 its mass is presented, where assumptions, the equation of state, numerical techniques utilizing the momentum equation and the energy conservation equation, tests, and initial conditions and units are given.

645 citations

Journal ArticleDOI
01 Mar 1977-Icarus
TL;DR: In this paper, it was suggested that the explosion of a Type II supernova triggered the collapse of a nearby interstellar cloud and led to the formation of the solar system, and the abundances resulting from nuclear processing of the supernova ejecta were presented.

432 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the dynamic mass exchange process in doubly degenerate binaries using a three-dimensional numerical simulation of the evolution of a binary system in which the primary is a 1.2-solar-mass white dwarf and the Roche lobe filling secondary is a 0.9 -solar mass dwarf.
Abstract: The dynamic mass exchange process in doubly degenerate binaries was investigated using a three-dimensional numerical simulation of the evolution of a doubly degenerate binary system in which the primary is a 1.2-solar-mass white dwarf and the Roche lobe filling secondary is a 0.9-solar-mass dwarf. The results show that, in a little more than two orbital periods, the secondary is completely destroyed and transformed into a thick disk orbiting about the primary. Since only a very small fraction of the mass (0.0063 solar mass) escapes the system, the evolution of the binary results in the formation of a massive object. This object is composed of three parts, the initial white dwarf primary, a very hot pressure-supported spherical envelope, and a rotationally supported outer disk. The evolution of the system can be understood in terms of a simple analytical model where it is shown that the angular momentum carried by the mass during the transfer and stored in the disk determines the evolution of the system.

419 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors compared the relative abundances of the refractory elements in carbonaceous, ordinary, and enstatite chondritic meteorites and found that the most consistent composition of the Earth's core is derived from the seismic profile and its interpretation, compared with primitive meteorites, and chemical and petrological models of peridotite-basalt melting relationships.

10,830 citations

Journal ArticleDOI
TL;DR: In this article, new abundance tables have been compiled for C1 chondrites and the solar photosphere and corona, based on a critical review of the literature to mid-1988.

10,322 citations

Journal ArticleDOI
TL;DR: In this article, solar photospheric and meteoritic CI chondrite abundance determinations for all elements are summarized and the best currently available photosphere abundances are selected, including the meteoritic and solar abundances of a few elements (e.g., noble gases, beryllium, boron, phosphorous, sulfur).
Abstract: Solar photospheric and meteoritic CI chondrite abundance determinations for all elements are summarized and the best currently available photospheric abundances are selected. The meteoritic and solar abundances of a few elements (e.g., noble gases, beryllium, boron, phosphorous, sulfur) are discussed in detail. The photospheric abundances give mass fractions of hydrogen (X ¼ 0:7491), helium (Y ¼ 0:2377), and heavy elements (Z ¼ 0:0133), leading to Z=X ¼ 0:0177, which is lower than the widely used Z=X ¼ 0:0245 from previous compilations. Recent results from standard solar models considering helium and heavy-element settling imply that photospheric abundances and mass fractions are not equal to protosolar abundances (representative of solar system abundances). Protosolar elemental and isotopic abundances are derived from photospheric abundances by considering settling effects. Derived protosolar mass fractions are X0 ¼ 0:7110, Y0 ¼ 0:2741, and Z0 ¼ 0:0149. The solar system and photospheric abundance tables are used to compute self-consistent sets of condensation temperatures for all elements. Subject headings: astrochemistry — meteors, meteoroids — solar system: formation — Sun: abundances — Sun: photosphere

4,305 citations

Journal ArticleDOI
TL;DR: In this article, the theory and application of Smoothed particle hydrodynamics (SPH) since its inception in 1977 are discussed, focusing on the strengths and weaknesses, the analogy with particle dynamics and the numerous areas where SPH has been successfully applied.
Abstract: In this review the theory and application of Smoothed particle hydrodynamics (SPH) since its inception in 1977 are discussed. Emphasis is placed on the strengths and weaknesses, the analogy with particle dynamics and the numerous areas where SPH has been successfully applied.

4,070 citations

Journal ArticleDOI
TL;DR: A survey of the dimensions and composition of the present continental crust is given in this paper, where it is concluded that at least 60% of the crust was emplaced by the late Archean (ca. 2.7 eons).
Abstract: A survey is given of the dimensions and composition of the present continental crust. The abundances of immobile elements in sedimentary rocks are used to establish upper crustal composition. The present upper crustal composition is attributed largely to intracrustal differentiation resulting in the production of granites senso lato. Underplating of the crust by ponded basaltic magmas is probably a major source of heat for intracrustal differentiation. The contrast between the present upper crustal composition and that of the Archean upper crust is emphasized. The nature of the lower crust is examined in the light of evidence from granulites and xenoliths of lower crustal origin. It appears that the protoliths of most granulite facies exposures are more representative of upper or middle crust and that the lower crust has a much more basic composition than the exposed upper crust. There is growing consensus that the crust grows episodically, and it is concluded that at least 60% of the crust was emplaced by the late Archean (ca. 2.7 eons, or 2.7 Ga). There appears to be a relationship between episodes of continental growth and differentiation and supercontinental cycles, probably dating back at least to the late Archean. However, such cycles do not explain the contrast in crustal compositions between Archean and post-Archean. Mechanisms for deriving the crust from the mantle are considered, including the role of present-day plate tectonics and subduction zones. It is concluded that a somewhat different tectonic regime operated in the Archean and was responsible for the growth of much of the continental crust. Archean tonalites and trond-hjemites may have resulted from slab melting and/or from melting of the Archean mantle wedge but at low pressures and high temperatures analogous to modern boninites. In contrast, most andesites and subduction-related rocks, now the main contributors to crustal growth, are derived ultimately from the mantle wedge above subduction zones. The cause of the contrast between the processes responsible for Archean and post-Archean crustal growth is attributed to faster subduction of younger, hotter oceanic crust in the Archean (ultimately due to higher heat flow) compared with subduction of older, cooler oceanic crust in more recent times. A brief survey of the causes of continental breakup reveals that neither plume nor lithospheric stretching is a totally satisfactory explanation. Speculations are presented about crustal development before 4000 m.y. ago. The terrestrial continental crust appears to be unique compared with crusts on other planets and satellites in the solar system, ultimately a consequence of the abundant free water on the Earth.

3,656 citations