scispace - formally typeset
Search or ask a question
Author

A.G. Waters

Bio: A.G. Waters is an academic researcher from University of Adelaide. The author has contributed to research in topics: Particle & Particle size. The author has an hindex of 2, co-authored 2 publications receiving 1032 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a range of disaggregating treatments from gentle to vigorous were applied to different particle sizes and the results indicated the potential role of roots and hyphae in the stabilization of larger aggregates, and for fragments of roots as nuclei for smaller aggregates.
Abstract: An Alfisol, a Mollisol and an Oxisol were fractionated into different particle sizes after a range of disaggregating treatments from gentle to vigorous. The Alfisol and the Mollisol appeared to break down in steps; macroaggregates >250 µm diameter breaking down to microaggregates 20-250 µm diameter before particles <20 µm were released. Vigorous disruption led to particle size distributions similar to those obtained by classical methods used to determine particle size distributions. The Oxisol was stable to rapid wetting treatments but when aggregate disruption was initiated by vigorous treatments particles <20 µm diameter were released and there was no evidence of aggregate hierarchy. Scanning electron microscopy of particles of different sizes showed distinctly single grain particles and aggregates. The microscopic studies indicated the potential role of roots and hyphae in the stabilization of larger aggregates, and for fragments of roots as nuclei for smaller aggregates. Plant debris was not visible in aggregates <20 µm but clay microstructure was evident. It is suggested that aggregate hierarchy occurs in Alfisols and Mollisols because organic materials are the dominant stabilizing agents in larger aggregates but in the Oxisol oxides are dominant stabilizing agents and prevent the expression of aggregate hierarchy caused by organic materials.

1,046 citations

Book ChapterDOI
01 Jan 2003

97 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The relationship between soil structure and the ability of soil to stabilize soil organic matter (SOM) is a key element in soil C dynamics that has either been overlooked or treated in a cursory fashion when developing SOM models as discussed by the authors.
Abstract: The relationship between soil structure and the ability of soil to stabilize soil organic matter (SOM) is a key element in soil C dynamics that has either been overlooked or treated in a cursory fashion when developing SOM models. The purpose of this paper is to review current knowledge of SOM dynamics within the framework of a newly proposed soil C saturation concept. Initially, we distinguish SOM that is protected against decomposition by various mechanisms from that which is not protected from decomposition. Methods of quantification and characteristics of three SOM pools defined as protected are discussed. Soil organic matter can be: (1) physically stabilized, or protected from decomposition, through microaggregation, or (2) intimate association with silt and clay particles, and (3) can be biochemically stabilized through the formation of recalcitrant SOM compounds. In addition to behavior of each SOM pool, we discuss implications of changes in land management on processes by which SOM compounds undergo protection and release. The characteristics and responses to changes in land use or land management are described for the light fraction (LF) and particulate organic matter (POM). We defined the LF and POM not occluded within microaggregates (53–250 μm sized aggregates as unprotected. Our conclusions are illustrated in a new conceptual SOM model that differs from most SOM models in that the model state variables are measurable SOM pools. We suggest that physicochemical characteristics inherent to soils define the maximum protective capacity of these pools, which limits increases in SOM (i.e. C sequestration) with increased organic residue inputs.

3,301 citations

Journal ArticleDOI
01 Jan 2005-Geoderma
TL;DR: In this paper, soil organic carbon (SOC), biota, ionic bridging, clay and carbonates are associated with aggregation by rearrangement, flocculation and cementation.

3,241 citations

Journal ArticleDOI
TL;DR: In this article, Tisdall and Oades [J. Soil Sci. 62 (1982) 141] coined the aggregate hierarchy concept describing a spatial scale dependence of mechanisms involved in micro- and macroaggregate formation.
Abstract: Since the 1900s, the link between soil biotic activity, soil organic matter (SOM) decomposition and stabilization, and soil aggregate dynamics has been recognized and intensively been studied. By 1950, many studies had, mostly qualitatively, investigated the influence of the five major factors (i.e. soil fauna, microorganisms, roots, inorganics and physical processes) on this link. After 1950, four theoretical mile-stones related to this subject were realized. The first one was when Emerson [Nature 183 (1959) 538] proposed a model of a soil crumb consisting of domains of oriented clay and quartz particles. Next, Edwards and Bremner [J. Soil Sci. 18 (1967) 64] formulated a theory in which the solid-phase reaction between clay minerals, polyvalent cations and SOM is the main process leading to microaggregate formation. Based on this concept, Tisdall and Oades [J. Soil Sci. 62 (1982) 141] coined the aggregate hierarchy concept describing a spatial scale dependence of mechanisms involved in micro- and macroaggregate formation. Oades [Plant Soil 76 (1984) 319] suggested a small, but very important, modification to the aggregate hierarchy concept by theorizing the formation of microaggregates within macroaggregates. Recent research on aggregate formation and SOM stabilization extensively corroborate this modification and use it as the base for furthering the understanding of SOM dynamics. The major outcomes of adopting this modification are: (1) microaggregates, rather than macroaggregates protect SOM in the long term; and (2) macroaggregate turnover is a crucial process influencing the stabilization of SOM. Reviewing the progress made over the last 50 years in this area of research reveals that still very few studies are quantitative and/or consider interactive effects between the five factors. The quantification of these relationships is clearly needed to improve our ability to predict changes in soil ecosystems due to management and global change. This quantification can greatly benefit from viewing aggregates as dynamic rather than static entities and relating aggregate measurements with 2D and 3D quantitative spatial information.

3,134 citations

Journal ArticleDOI
TL;DR: Vesicular-arbuscular mycorrhizal fungi can affect the water balance of both amply watered and droughted host plants and the influence of soil drying on the fungi is discussed.
Abstract: Vesicular-arbuscular mycorrhizal fungi can affect the water balance of both amply watered and droughted host plants. This review summarizes these effects and possible causal mechanisms. Also discussed are host drought resistance and the influence of soil drying on the fungi.

1,964 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the effect of cultivation intensity on aggregate distribution and aggregate C in three soils dominated by 2:1 clay mineralogy and one soil characterized by a mixed (2:1 and 1:1) mineralogy.
Abstract: Cultivation reduces soil C content and changes the distribution and stability of soil aggregates. We investigated the effect of cultivation intensity on aggregate distribution and aggregate C in three soils dominated by 2:1 clay mineralogy and one soil characterized by a mixed (2:1 and 1:1) mineralogy. Each site had native vegetation (NV), no-tillage (NT), and conventional tillage (CT) treatments. Slaked (i.e., air-dried and fast-rewetted) and capillary rewetted soils were separated into four aggregate-size classes ( 2000 μm) by wet sieving. In rewetted soils, the proportion of macroaggregates accounted for 85% of the dry soil weight and was similar across management treatments. In contrast, aggregate distribution from slaked soils increasingly shifted toward more microaggregates and fewer macroaggregates with increasing cultivation intensity. In soils dominated by 2:1 clay mineralogy, the C content of macroaggregates was 1.65 times greater compared to microaggregates. These observations support an aggregate hierarchy in which microaggregates are bound together into macroaggregates by organic binding agents in 2:1 clay-dominated soils. In the soil with mixed mineralogy, aggregate C did not increase with increasing aggregate size. At all sites, rewetted macro- and microaggregate C and slaked microaggregate C differed in the order NV > NT > CT, In contrast, slaked macroaggregate C concentration was similar across management treatments, except in the soil with mixed clay mineralogy. We conclude that increasing cultivation intensity leads to a loss of C-rich macroaggregates and an increase of C-depleted microaggregates in soils that express aggregate hierarchy.

1,373 citations