scispace - formally typeset
Search or ask a question
Author

A. García-Junceda

Bio: A. García-Junceda is an academic researcher from IMDEA. The author has contributed to research in topics: Microstructure & Spark plasma sintering. The author has an hindex of 14, co-authored 37 publications receiving 690 citations. Previous affiliations of A. García-Junceda include Spanish National Research Council & Complutense University of Madrid.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors examined the validity of existing neural network models, but focusing on fine AGS (below 5μm) and showed that such models predict a moderate dependence of M s with AGS.

150 citations

Journal ArticleDOI
TL;DR: High-entropy alloys (HEAs) have attracted a great deal of interest over the last 14 years and one reason for this level of interest is related to these alloys breaking the alloying principles.
Abstract: High-entropy alloys (HEAs) have attracted a great deal of interest over the last 14 years. One reason for this level of interest is related to these alloys breaking the alloying principles ...

120 citations

Journal ArticleDOI
TL;DR: In this paper, a study of the microstructural evolution during the whole manufacturing process reveals that the increase of the cooling rate during the hot rolling leads to a significant decrease of martensite banding in the microstructure of dual phase steels for sheets used in the automotive industry.
Abstract: The segregation of manganese during solidification from casting is responsible for banding problems of dual phase steels. Microstructural banding lasts during all the manufacture process, producing the deterioration of the material, so the final ductility and impact toughness of the sheets are decreased due to the high level of anisotropy. To avoid or reduce the problem of microstructural banding, it is proposed to modify the hot rolling parameters so the formation of ferrite-pearlite microstructures is avoided and thus the presence of banding. The study of the microstructural evolution during the whole manufacturing process reveals that the increase of the cooling rate during the hot rolling leads to a significant decrease of martensite banding in the microstructure of dual phase steels for sheets used in the automotive industry.

88 citations

Journal ArticleDOI
TL;DR: In this article, the effect of the anisotropy of an extruded bar of a 14Cr ODS on the tensile properties was investigated, and different fracture modes were observed depending on the orientation under study.

59 citations

Journal ArticleDOI
TL;DR: In this article, a 14Cr oxide dispersion strengthened (ODS) steel bar was characterized by different microstructural techniques in order to evaluate the link between its microstructure and the mechanical properties achieved.
Abstract: A Fe–14Cr–1W–0.4Ti–0.3Y203 ferritic steel bar was characterised by different microstructural techniques in order to evaluate the link between its microstructure and the mechanical properties achieved. This bar was produced by mechanical alloying of a pre-alloyed gas atomised powder with yttria particles, followed by hot extrusion and subsequently annealing. The knowledge of the microstructure of this 14Cr oxide dispersion strengthened (ODS) steel allows for the explanation of the mechanical properties observed, such as the decrease of the ductility found in the transverse orientation of the bar, the existence of zig-zag crack paths in the broken specimens after the impact tests at low temperatures and the appearance of delaminations when the temperature is increased.

43 citations


Cited by
More filters
Journal ArticleDOI
Abstract: This article presents an overview of the developments in stainless steels made since the 1990s. Some of the new applications that involve the use of stainless steel are also introduced. A brief introduction to the various classes of stainless steels, their precipitate phases and the status quo of their production around the globe is given first. The advances in a variety of subject areas that have been made recently will then be presented. These recent advances include (1) new findings on the various precipitate phases (the new J phase, new orientation relationships, new phase diagram for the Fe–Cr system, etc.); (2) new suggestions for the prevention/mitigation of the different problems and new methods for their detection/measurement and (3) new techniques for surface/bulk property enhancement (such as laser shot peening, grain boundary engineering and grain refinement). Recent developments in topics like phase prediction, stacking fault energy, superplasticity, metadynamic recrystallisation and the calculation of mechanical properties are introduced, too. In the end of this article, several new applications that involve the use of stainless steels are presented. Some of these are the use of austenitic stainless steels for signature authentication (magnetic recording), the utilisation of the cryogenic magnetic transition of the sigma phase for hot spot detection (the Sigmaplugs), the new Pt-enhanced radiopaque stainless steel (PERSS) coronary stents and stainless steel stents that may be used for magnetic drug targeting. Besides recent developments in conventional stainless steels, those in the high-nitrogen, low-Ni (or Ni-free) varieties are also introduced. These recent developments include new methods for attaining very high nitrogen contents, new guidelines for alloy design, the merits/demerits associated with high nitrogen contents, etc.

1,668 citations

Journal ArticleDOI
TL;DR: In this paper, the dependence of the martensite-start temperature on the austenite grain size has been investigated and a theory based on the ability to detect transformation as a function of the grain size was proposed.

456 citations

Journal ArticleDOI
TL;DR: The factors leading to the room temperature stabilization of austenite were investigated for an ultrafine-grained 6-mass% Mn transformation-induced plasticity steel in this article.

312 citations

Journal ArticleDOI
TL;DR: A comprehensive review on the state-of-the-art of ML applications in a variety of additive manufacturing domains can be found in this paper, where the authors provide a section summarizing the main findings from the literature and provide perspectives on some selected interesting applications.
Abstract: Additive manufacturing (AM) has emerged as a disruptive digital manufacturing technology. However, its broad adoption in industry is still hindered by high entry barriers of design for additive manufacturing (DfAM), limited materials library, various processing defects, and inconsistent product quality. In recent years, machine learning (ML) has gained increasing attention in AM due to its unprecedented performance in data tasks such as classification, regression and clustering. This article provides a comprehensive review on the state-of-the-art of ML applications in a variety of AM domains. In the DfAM, ML can be leveraged to output new high-performance metamaterials and optimized topological designs. In AM processing, contemporary ML algorithms can help to optimize process parameters, and conduct examination of powder spreading and in-process defect monitoring. On the production of AM, ML is able to assist practitioners in pre-manufacturing planning, and product quality assessment and control. Moreover, there has been an increasing concern about data security in AM as data breaches could occur with the aid of ML techniques. Lastly, it concludes with a section summarizing the main findings from the literature and providing perspectives on some selected interesting applications of ML in research and development of AM.

274 citations