scispace - formally typeset
Search or ask a question
Author

A. Giri

Other affiliations: VIT University, University of Pisa
Bio: A. Giri is an academic researcher from Indian Institute of Technology Roorkee. The author has contributed to research in topics: Residual stress & Welding. The author has an hindex of 8, co-authored 15 publications receiving 414 citations. Previous affiliations of A. Giri include VIT University & University of Pisa.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the evolution of phases in modified 9Cr-1Mo P91 steel and their effects on microstructural stability and mechanical properties have been studied for specimens that were subjected to different thermal heat treatment conditions.
Abstract: To achieve high thermal efficiency, modern day thermal power plants operate at higher operating temperature and pressure which necessitates use of steels with high creep rupture strength such as modified 9Cr-1Mo steels. In the present study, the evolution of phases in modified 9Cr-1Mo P91 steel and their effects on microstructural stability and mechanical properties have been studied for specimens that were subjected to different thermal heat treatment conditions. The main focus has been to study the effect of heat treatment temperature ranging from 623 K to 1033 K (350–760 °C) on P91 steel. Further, the effect of furnace cooling, water quenching, tempering at 1273 K (1000 °C) and austenitizing on the mechanical properties and microstructure has been studied. The techniques used for material characterization were scanning electron microscopy (SEM), optical microscopy (OM) and X-ray diffraction. For low tempering temperature, i.e. 623 K (350 °C), M 23 C 6 , M 3 C, M 7 C 3, and MX precipitates have been observed with high yield strength (YS), tensile strength (UTS), hardness and low toughness. In the high temperature range, 923–1033 K (650–760 °C), fine MX, M 7 C 3 , M 23 C 6 , M 2 X, and M 3 C precipitates have been observed with low YS, UTS, hardness and high toughness. The steel tempered at 1033 K (760 °C) was observed to be having best combination of YS, UTS, hardness, toughness and ductility.

160 citations

Journal ArticleDOI
TL;DR: In this article, the effect of solutionizing temperature on microstructure and mechanical properties of CSEF P91 steel has been investigated using optical metallography and scanning electron microscopy (SEM).
Abstract: Mechanical properties of creep enhanced ferritic (CSEF) steels is affected by various parameters, the solutionizing temperature is one of them. The present work demonstrates the effect of solutionizing temperature on microstructure and mechanical properties of CSEF P91 steel. Optical metallography (OM) and Scanning electron microscopy (SEM) were carried out to study the microstructure of P91 steel in different heat treatment conditions. In order to determine the precipitates present in microstructure; X-ray analysis was performed. Moreover, the influence of solutionizing temperature on the mechanical properties (strength, hardness and impact toughness) has also been studied.

113 citations

Journal ArticleDOI
TL;DR: In this article, the microstructural responses of P91 pipe weldments have been characterized in as-welded, postweld heat treatment (PWHT) and ageing conditions.
Abstract: Steels 9-12% Cr, having the high creep rupture strength are advocated for the modern low polluting thermal power plants. In the present investigation, the P91 pipe weldments have been characterized for microstructural responses in as-welded, post-weld heat treatment (PWHT) and ageing conditions. The PWHT of welded samples were carried out at 760 °C for time of 2 h and ageing at 760 °C for 720 h and 1440 h, respectively. The effect of time has been studied on precipitates size, distribution of precipitates and grain sizes present in various zones of P91 steel weldments. The impact toughness and hardness variation of heat affected zone (HAZ) have also been studied in as-welded condition as well as at different heat treatment condition. A significant change was observed in grain size and precipitates size after each heat treatment condition. The maximum impact toughness of HAZ was obtained after PWHT at 760 °C for 2 h. The main phase observed in weld fusion zone in as-welded, PWHT and ageing conditions were M23C6, MX, M7C3, Fe-rich M3C and M2C. The unwanted Z-phase (NbCrN) was also noticed in weld fusion zone after ageing of 1440 h.

60 citations

Journal ArticleDOI
TL;DR: In this article, the effect of weld groove design and heat treatment on microstructure evolution and Charpy toughness of P91 pipe weldments was studied and the influence of subsequent PWHT and N&T treatment was also investigated.
Abstract: The effect of weld groove design and heat treatment on microstructure evolution and Charpy toughness of P91 pipe weldments was studied. The P91 pipe weldments were subjected to subcritical post weld heat treatment (760 °C-2 h) and normalizing/tempering conditions (normalized-1040 °C/40 min, air cooled; tempered 760 °C/2 h, air cooled) were employed. The influence of subsequent PWHT and N&T treatment on the microstructure of various zone of P91 pipe weldments were also investigated. The present investigation also described the effect of PWHT and N&T treatment on hardness, grain size, precipitate size, inter-particle spacing and fraction area of precipitates present in each zone of P91 pipe weldments. The result indicated great impact of heat treatment on the Charpy toughness and microstructure evolution of P91 weldments. The N&T treatment was found to be more effective heat treatment compared to subsequent PWHT. Charpy toughness value was found to be higher for narrow-groove design as compared to conventional V-groove design.

55 citations

Journal ArticleDOI
TL;DR: In this article, the plasticity and stress concentration effects of blind hole drilling technique on the calculation of residual stresses for SS 304L and modified Cr-Mo Grade 91 alloys were investigated experimentally through tensile testing and for biaxial loading through numerical modeling.
Abstract: The blind hole drilling technique, utilized for measuring residual stress by using strain gauge rosette, is associated with plastic deformation of material that is removed from the hole and also with stress concentration effect of multi point cutting tool. Further, the plasticity effect is also induced in presence of high applied stress which may lead to local yielding of the hole boundary. The present paper describes the plasticity and stress concentration effects of blind hole drilling technique on the calculation of residual stresses for SS 304L and modified Cr–Mo Grade 91 alloys. For uniaxial loading, the responses of strain gauge rosettes were investigated experimentally through tensile testing and for biaxial loading through numerical modeling. Correlations were developed to directly calculate the corrected values of residual stresses from the experimental strain data obtained through the strain gauge rosette and from stress values as per ASTM E837-13.

39 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the evolution of phases in modified 9Cr-1Mo P91 steel and their effects on microstructural stability and mechanical properties have been studied for specimens that were subjected to different thermal heat treatment conditions.
Abstract: To achieve high thermal efficiency, modern day thermal power plants operate at higher operating temperature and pressure which necessitates use of steels with high creep rupture strength such as modified 9Cr-1Mo steels. In the present study, the evolution of phases in modified 9Cr-1Mo P91 steel and their effects on microstructural stability and mechanical properties have been studied for specimens that were subjected to different thermal heat treatment conditions. The main focus has been to study the effect of heat treatment temperature ranging from 623 K to 1033 K (350–760 °C) on P91 steel. Further, the effect of furnace cooling, water quenching, tempering at 1273 K (1000 °C) and austenitizing on the mechanical properties and microstructure has been studied. The techniques used for material characterization were scanning electron microscopy (SEM), optical microscopy (OM) and X-ray diffraction. For low tempering temperature, i.e. 623 K (350 °C), M 23 C 6 , M 3 C, M 7 C 3, and MX precipitates have been observed with high yield strength (YS), tensile strength (UTS), hardness and low toughness. In the high temperature range, 923–1033 K (650–760 °C), fine MX, M 7 C 3 , M 23 C 6 , M 2 X, and M 3 C precipitates have been observed with low YS, UTS, hardness and high toughness. The steel tempered at 1033 K (760 °C) was observed to be having best combination of YS, UTS, hardness, toughness and ductility.

160 citations

Journal ArticleDOI
TL;DR: In this article, microstructure evolution in P91 steel and their weldments are reviewed in as-virgin and heat treatment and creep exposure condition, and the role of grain coarsening, Cr/Fe ratio, lath widening and dislocation density on creep rupture life of base metal and weldments is discussed.
Abstract: In present research article, microstructure evolution in P91 steel and their weldments are reviewed in as-virgin and heat treatment and creep exposure condition. The thermal stability of P91 steel is derived from solid solution strengthening, sub-grain hardening and precipitation hardening. The initial microstructure plays an important role in deciding the mechanical properties of P91 steel and their weldment in long-term ageing and creep exposure condition. Effects of various alloying elements present in P91 steel and their related phase have also been discussed in details. The role of grain coarsening, Cr/Fe ratio, lath widening and dislocation density on creep rupture life of base metal and weldments are discussed. The combined effects of lath martensitic microstructure, residual stress and diffusible hydrogen content on performance of P91 steel material are also discussed.

155 citations

Journal ArticleDOI
TL;DR: In this paper, the fracture surface of cast and forged (C&F) modified 9Cr-1Mo (P91) steels, which are subjected to different heat treatment regimes, was analyzed by using the field-emission scanning electron microscope (FE-SEM).
Abstract: Cr-Mo creep strength enhanced ferritic (CSEF) steels are mainly used in nuclear reactors and ultra-supercritical (USC) power plants for superheater tubes and header. The present research deals with the analysis of fracture surface of the tensile and impact tested specimen of cast and forged (C&F) modified 9Cr-1Mo (P91) steels, which are subjected to different heat treatment regimes. The heat treatment temperatures were 350 °C, 650 °C, 760 °C and 1000 °C, respectively. The heat treatment was carried out a particular temperature for 2 h duration. The fracture surface of tensile and impact tested specimen were also studied for a varying time duration from 2 h to 8 h for a fixed tempering temperature of 760 °C. The heat treatment effect on tensile properties, toughness, Vickers hardness and particle size was also studied. Heat treatment has a noticeable effect on mechanical properties of C&F Grade 91 (X10CrMoVNNB9-1) steel. Fracture morphology is strongly affected by the microstructure and presence of secondary phase particles. The fracture surface was analyzed by using the field-emission scanning electron microscope (FE-SEM). The fractured tensile sample mainly indicates the presence of transgranular ductile dimples and transgranular cleavage facets for heat treatment temperatures of 350 °C, 1000 °C and 1040 °C. The percentage of cleavage facets on the tensile fracture surface was found to decrease for sample heat treated at 760 °C. Less amount of ductile dimples was noticed on the fracture surface for the samples heat treated at 650 °C and 760 °C (furnace-cooled). The so-called ‘splitting’ fracture was noticed for the sample heated at 760 °C. The ‘splitting’ fracture becomes more pronounced with the increase in tempering duration from 2 h to 8 h. The sample heat treated for 1000 °C, mainly indicates the cleavage facets on the fracture surface. The fracture mode of impact tested specimen is more complex and shows both ductile dimple tearing and quasi-cleavage facets for heat treatment temperature of 650 °C, 760 °C and as-received condition. The impact failure zone of sample heat treated at 350 °C and 1000 °C indicates the presence of so-called ‘river pattern’ on the fracture surface.

133 citations

Journal ArticleDOI
TL;DR: In this paper, the microstructure and mechanical behavior of the dissimilar welded joint (DWJ) between ferritic-martensitic steel and austenitic grade steel along with its application have been summarized in Ultra Super Critical (USC) power plant.
Abstract: In this review article, microstructure and mechanical behavior of the dissimilar welded joint (DWJ) between ferritic-martensitic steel and austenitic grade steel along with its application have been summarized in Ultra Super Critical (USC) power plant. Creep-strength enhanced ferritic-martensitic (CSEF/M) P91 steel was developed to sustain at extreme operating conditions of ultra-supercritical (USC) power plants, and later, P92 was developed to achieve better mechanical properties, higher creep-rupture strength and high operating temperature with the reduction in wall thickness as compared to P91 steel. The most common application of P91/P92 material in power plants includes high pressure and high-temperature steam piping, headers, super-heater tubing, and water-wall tubing. The other most commonly used material in the power plants is austenitic stainless steel, i.e., SS 304 L. The austenitic grade stainless steel offers high resistance to corrosion due to the high wt. % chromium and nickel content (18–20 and 8–12, respectively). Due to the low carbon content, the SS 304 L is less sensitive to the sensitization problem and offers excellent weldability. The joining of these dissimilar materials is frequently required in the power generation industry. The current review focuses on the main difficulty associated with dissimilar welding of martensitic P91/P92 and austenitic grade stainless steel. The different chemical composition, mechanical, physical and metallurgical properties of the martensitic P91/P92 and austenitic grade stainless steel leads to the problems such as hot cracking and carbon migration. The other weldability issues are the formation of a brittle intermetallic compound, the formation of soft transaction heat affected zone along with martensitic steel, δ ferrite formation in fusion zone, diffusion related problem, and residual stresses, which necessitates thorough study and qualification of welds. The effect of coarsening of various precipitates such as M23C6 carbides, MX carbonitrides, and effect of laves phase, z-phase, and sigma phase on mechanical property, and creep-rupture strength of DWJ are also discussed in detail. Based on the literature reviewed, it has been found that some of the above-stated problems can be solved by using nickel-based filler wire due to its intermediate physical and mechanical properties. The selection of the proper filler metal is another vital issue in dissimilar welds joint that is also covered in this review article. The reason behind the formation of the unmixed zone, filler deficient region, peninsula, island, beach, migrated grain boundaries, solidified grain boundaries, and solidified subgrain boundaries during DWJ of martensitic P91/P92 and austenitic grade stainless steel is also discussed. The heat treatment is required to eliminate the heterogeneous microstructure during the dissimilar welding. The effect of post-weld heat treatment (PWHT) on the microstructure and mechanical behavior of the DWJ also reviewed. The residual stress developed during the DWJ may cause the premature failure of the components under service, has also been discussed in detail. The effect associated with the residual stress deformation has been reviewed in the different conditions of the DWJ.

126 citations

Journal ArticleDOI
TL;DR: In this article, a review of the thermal spraying techniques and current advancements in materials, mechanical properties, understand the high temperature performance, residual stress in the coating, understanding the failure mechanisms and life prediction models for coatings is presented.
Abstract: Thermal barrier coatings (TBCs) have seen considerable advancement since the initial testing and development of thermal spray coating. Thermal barrier coatings are currently been utilized in various engineering areas which include internal combustion engines, gas turbine blades of jet engines, pyrochemical reprocessing units and many more. The development of new materials, deposition techniques is targeted at improving the life of the underlying substrate. Hence, the performance of the coating plays a vital role in improving the life of substrate. The scope for advancement in thermal barrier coatings is very high and continuous efforts are being made to produce improved and durable coatings. Thermal barrier coatings have the potential to address long term and short-term problems in gas turbine, internal combustion and power generation industry. The study of thermal barrier coating material, performance and life estimation is a critical factor that should be understood to introduce any advancement. The present review gives an overview of the thermal spraying techniques and current advancements in materials, mechanical properties, understanding the high temperature performance, residual stress in the coating, understanding the failure mechanisms and life prediction models for coatings.

115 citations