scispace - formally typeset
Search or ask a question

Showing papers by "A. Goobar published in 2008"


Journal ArticleDOI
TL;DR: In this article, the authors present a new compilation of Type Ia supernovae (SNe Ia), a new dataset of low-redshift nearby-Hubble-flow SNe and new analysis procedures to work with these heterogeneous compilations.
Abstract: We present a new compilation of Type Ia supernovae (SNe Ia), a new dataset of low-redshift nearby-Hubble-flow SNe and new analysis procedures to work with these heterogeneous compilations. This ``Union'' compilation of 414 SN Ia, which reduces to 307 SNe after selection cuts, includes the recent large samples of SNe Ia from the Supernova Legacy Survey and ESSENCE Survey, the older datasets, as well as the recently extended dataset of distant supernovae observed with HST. A single, consistent and blind analysis procedure is used for all the various SN Ia subsamples, and a new procedure is implemented that consistently weights the heterogeneous data sets and rejects outliers. We present the latest results from this Union compilation and discuss the cosmological constraints from this new compilation and its combination with other cosmological measurements (CMB and BAO). The constraint we obtain from supernovae on the dark energy density is $\Omega_\Lambda= 0.713^{+0.027}_{-0.029} (stat)}^{+0.036}_{-0.039} (sys)}$, for a flat, LCDM Universe. Assuming a constant equation of state parameter, $w$, the combined constraints from SNe, BAO and CMB give $w=-0.969^{+0.059}_{-0.063}(stat)^{+0.063}_{-0.066} (sys)$. While our results are consistent with a cosmological constant, we obtain only relatively weak constraints on a $w$ that varies with redshift. In particular, the current SN data do not yet significantly constrain $w$ at $z>1$. With the addition of our new nearby Hubble-flow SNe Ia, these resulting cosmological constraints are currently the tightest available.

1,578 citations


01 Jan 2008
TL;DR: In this article, the authors presented distance measurements to 71 high redshift type Ia supernovae discovered during the first year of the 5-year Supernova Legacy Survey (SNLS).
Abstract: We present distance measurements to 71 high redshift type Ia supernovae discovered during the first year of the 5-year Supernova Legacy Survey (SNLS). These events were detected and their multi-color light-curves measured using t he MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was perf ormed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshift. With this data set, we have built a Hubble diagram extending to z = 1, with all distance measurements involving at least two bands. Systematic uncertainties are evaluated making use of the multi- band photometry obtained at CFHT. Cosmological fits to this fi rst year SNLS Hubble diagram give the following results : M = 0.263± 0.042 (stat)± 0.032 (sys) for a flatCDM model; and w = −1.023± 0.090 (stat)± 0.054 (sys) for a flat cosmology with constant equation of state w when combined with the constraint from the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations.

1 citations