scispace - formally typeset
Search or ask a question

Showing papers by "A. Goobar published in 2018"


Journal ArticleDOI
TL;DR: The Carnegie Supernova Project-II (CSP-II) was an NSF-funded, four-year program to obtain optical and near-infrared observations of a "Cosmology" sample of ∼100 Type Ia supernovae located in the smooth Hubble flow as discussed by the authors.
Abstract: The Carnegie Supernova Project-II (CSP-II) was an NSF-funded, four-year program to obtain optical and near-infrared observations of a "Cosmology" sample of $\sim100$ Type Ia supernovae located in the smooth Hubble flow ($0.03 \lesssim z \lesssim 0.10$). Light curves were also obtained of a "Physics" sample composed of 90 nearby Type Ia supernovae at $z \leq 0.04$ selected for near-infrared spectroscopic time-series observations. The primary emphasis of the CSP-II is to use the combination of optical and near-infrared photometry to achieve a distance precision of better than 5%. In this paper, details of the supernova sample, the observational strategy, and the characteristics of the photometric data are provided. In a companion paper, the near-infrared spectroscopy component of the project is presented.

42 citations


Posted Content
TL;DR: In this article, the location of the supernova explosion was estimated from the color evolution of 48 reddened Type Ia supernovae from the literature and the inferred dust location is compatible with an interstellar origin for the extinction.
Abstract: The colour evolution of reddened Type Ia supernovae can place strong constraints on the location of dust and help address the question of whether the observed extinction stems from the interstellar medium or from circumstellar material surrounding the progenitor. Here we analyse BV photometry of 48 reddened Type Ia supernovae from the literature and estimate the dust location from their $B-V$ colour evolution. We find a time-variable colour excess $E(B-V)$ for 15 supernovae in our sample and constrain dust to distances between 0.013 and 45 pc ($4\times10^{16}-10^{20}$ cm). For the remaining supernovae, we obtain a constant $E(B-V)$ evolution and place lower limits on the dust distance from the explosion. In all the 48 supernovae, the inferred dust location is compatible with an interstellar origin for the extinction. This is corroborated by the observation that supernovae with relatively nearby dust ($\lesssim$ 1 pc) are located close to the center of their host galaxy, in high-density dusty regions where interactions between the supernova radiation and interstellar clouds close by are likely to occur. For supernovae showing time-variable $E(B-V)$, we identify a potential preference for low $R_\mathrm{V}$ values, unusually strong sodium absorption and blue-shifted and time-variable absorption features. Within the interstellar framework, this brings evidence to a proposed scenario where cloud-cloud collisions induced by the supernova radiation pressure can shift the grain size distribution to smaller values and enhance the abundance of sodium in the gaseous phase.

1 citations