scispace - formally typeset
Search or ask a question
Author

A. H. Reddi

Bio: A. H. Reddi is an academic researcher from University of California, Davis. The author has contributed to research in topics: Cartilage & Demineralized bone matrix. The author has an hindex of 78, co-authored 210 publications receiving 21890 citations. Previous affiliations of A. H. Reddi include Hospital for Special Surgery & Johns Hopkins University School of Medicine.


Papers
More filters
Journal ArticleDOI
TL;DR: The evolving IL-17 family of ligands and receptors may play an important role in the homeostasis of tissues in health and disease beyond the immune system, as reviewed in this survey.

943 citations

Journal ArticleDOI
TL;DR: Rules of tissue architecture elucidated in bone morphogenesis may provide insights into tissue engineering and be universally applicable for all organs/tissues, including bones and joints.
Abstract: Morphogenesis is the developmental cascade of pattern formation and body plan establishment, culminating in the adult form. It has formed the basis for the emerging discipline of tissue engineering, which uses principles of molecular developmental biology and morphogenesis gleaned through studies on inductive signals, responding stem cells, and the extracellular matrix to design and construct spare parts that restore function to the human body. Among the many organs in the body, bone has considerable powers for regeneration and is a prototype model for tissue engineering. Implantation of demineralized bone matrix into subcutaneous sites results in local bone induction. This model mimics sequential limb morphogenesis and has permitted the isolation of bone morphogens, such as bone morphogenetic proteins (BMPs), from demineralized adult bone matrix. BMPs initiate, promote, and maintain chondrogenesis and osteogenesis, but are also involved in the morphogenesis of organs other than bone. The symbiosis of the mechanisms underlying bone induction and differentiation is critical for tissue engineering and is governed by both biomechanics (physical forces) and context (microenvironment/extracellular matrix), which can be duplicated by biomimetic biomaterials such as collagens, hydroxyapatite, proteoglycans, and cell adhesion glycoproteins, including fibronectins and laminin. Rules of tissue architecture elucidated in bone morphogenesis may provide insights into tissue engineering and be universally applicable for all organs/tissues, including bones and joints.

830 citations

Journal ArticleDOI
TL;DR: Coarse powders of acid-insoluble matrix of diaphysis and calvarial parietal bone rapidly and consistently transformed fibroblasts into masses of cartilage and bone containing hemopoietic marrow.
Abstract: Coarse powders of acid-insoluble matrix of diaphysis and calvarial parietal bone rapidly and consistently transformed fibroblasts into masses of cartilage and bone containing hemopoietic marrow. The transformant was encapsulated by fibroblasts within 24 hr to form a plaque. Transformation was restricted to the central thicknesses of the plaque. Under the stated conditions the alteration of the phenotype, fibroblast to chondroblast, was an unstable transformation, whereas the phenotype change, fibroblast to osteoblast, was stable. The transformation occurred on a rigid timetable of sequences. Measurements of alkaline phosphatase activity and incorporation of radioactive sulfate, phosphate, and calcium were sensitive and quantitative assays for the appearance of the transformed products, cartilage and bone.

816 citations

Journal ArticleDOI
TL;DR: Results suggest thatALK-3 and ALK-6 are type I receptors for OP-1 and BMP-4; in addition, ALk-2 is a type I receptor shared by activin and OP- 1, but not by B MP-4.

745 citations

Journal ArticleDOI
TL;DR: It is demonstrated that reconstituted basement membrane contains growth factors which influence cellular behavior, suggesting caution in the interpretation of experiments on cellular activity related to Matrigel, collagen type IV, and possibly other extracellular matrix components.

685 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The transforming growth factor beta (TGF-beta) family of growth factors control the development and homeostasis of most tissues in metazoan organisms and mutations in these pathways are the cause of various forms of human cancer and developmental disorders.
Abstract: The transforming growth factor beta (TGF-beta) family of growth factors control the development and homeostasis of most tissues in metazoan organisms. Work over the past few years has led to the elucidation of a TGF-beta signal transduction network. This network involves receptor serine/threonine kinases at the cell surface and their substrates, the SMAD proteins, which move into the nucleus, where they activate target gene transcription in association with DNA-binding partners. Distinct repertoires of receptors, SMAD proteins, and DNA-binding partners seemingly underlie, in a cell-specific manner, the multifunctional nature of TGF-beta and related factors. Mutations in these pathways are the cause of various forms of human cancer and developmental disorders.

7,710 citations

Journal ArticleDOI
TL;DR: The data support the hypothesis that a human lipoaspirate contains multipotent cells and may represent an alternative stem cell source to bone marrow-derived MSCs.
Abstract: Future cell-based therapies such as tissue engineering will benefit from a source of autologous pluripotent stem cells. For mesodermal tissue engineering, one such source of cells is the bone marrow stroma. The bone marrow compartment contains several cell populations, including mesenchymal stem cells (MSCs) that are capable of differentiating into adipogenic, osteogenic, chondrogenic, and myogenic cells. However, autologous bone marrow procurement has potential limitations. An alternate source of autologous adult stem cells that is obtainable in large quantities, under local anesthesia, with minimal discomfort would be advantageous. In this study, we determined if a population of stem cells could be isolated from human adipose tissue. Human adipose tissue, obtained by suction-assisted lipectomy (i.e., liposuction), was processed to obtain a fibroblast-like population of cells or a processed lipoaspirate (PLA). These PLA cells can be maintained in vitro for extended periods with stable population doubling and low levels of senescence. Immunofluorescence and flow cytometry show that the majority of PLA cells are of mesodermal or mesenchymal origin with low levels of contaminating pericytes, endothelial cells, and smooth muscle cells. Finally, PLA cells differentiate in vitro into adipogenic, chondrogenic, myogenic, and osteogenic cells in the presence of lineage-specific induction factors. In conclusion, the data support the hypothesis that a human lipoaspirate contains multipotent cells and may represent an alternative stem cell source to bone marrow-derived MSCs.

7,402 citations

Journal ArticleDOI
TL;DR: To confirm whether adipose tissue contains stem cells, the PLA population and multiple clonal isolates were analyzed using several molecular and biochemical approaches and PLA cells exhibited unique characteristics distinct from those seen in MSCs, including differences in CD marker profile and gene expression.
Abstract: Much of the work conducted on adult stem cells has focused on mesenchymal stem cells (MSCs) found within the bone marrow stroma. Adipose tissue, like bone marrow, is derived from the embryonic mesenchyme and contains a stroma that is easily isolated. Preliminary studies have recently identified a putative stem cell population within the adipose stromal compartment. This cell population, termed processed lipoaspirate (PLA) cells, can be isolated from human lipoaspirates and, like MSCs, differentiate toward the osteogenic, adipogenic, myogenic, and chondrogenic lineages. To confirm whether adipose tissue contains stem cells, the PLA population and multiple clonal isolates were analyzed using several molecular and biochemical approaches. PLA cells expressed multiple CD marker antigens similar to those observed on MSCs. Mesodermal lineage induction of PLA cells and clones resulted in the expression of multiple lineage-specific genes and proteins. Furthermore, biochemical analysis also confirmed lineage-specific activity. In addition to mesodermal capacity, PLA cells and clones differentiated into putative neurogenic cells, exhibiting a neuronal-like morphology and expressing several proteins consistent with the neuronal phenotype. Finally, PLA cells exhibited unique characteristics distinct from those seen in MSCs, including differences in CD marker profile and gene expression.

6,473 citations

Journal ArticleDOI
17 Apr 1998-Cell
TL;DR: The effects of OPGL are blocked in vitro and in vivo by OPG, suggesting that OPGl and OPG are key extracellular regulators of osteoclast development.

5,334 citations

Journal ArticleDOI
TL;DR: Research on the tissue engineering of bone and cartilage from the polymeric scaffold point of view is reviews from a biodegradable and bioresorbable perspective.

4,914 citations