scispace - formally typeset
Search or ask a question
Author

A. Hajimiri

Bio: A. Hajimiri is an academic researcher. The author has contributed to research in topics: Crystal oscillator frequencies & Frequency multiplier. The author has an hindex of 1, co-authored 1 publications receiving 142 citations.

Papers
More filters
Proceedings ArticleDOI
05 Feb 2001
TL;DR: In this paper, shunt-peaking is used as an approach to increase the locking range and lower the power dissipation at higher frequencies of a narrow-band injection-locked frequency divider.
Abstract: A frequency divider is an essential building block and one of the major sources of power dissipation in widely-used frequency synthesizers. As the output frequency of the synthesizer increases, the trade-off between the speed and power dissipation of dividers becomes more critical. Narrow-band injection-locked frequency dividers (ILFD) dissipate a fraction of the energy stored in the tank, which is determined by the quality factor, Q, of the resonator, in every cycle. Therefore, they have fundamentally lower power dissipation than wide-band dividers. Due to their narrow-band nature, ILFDs work in a limited frequency range (locking range). In this paper, shunt-peaking is used as an approach to increase the locking range and lower the power dissipation at higher frequencies.

143 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An injection-locked oscillator topology is presented, based on MOS switches directly coupled to the LC tank of well-known LC oscillators, which features wide locking ranges, a very low input capacitance, and highest frequency capability.
Abstract: An injection-locked oscillator topology is presented, based on MOS switches directly coupled to the LC tank of well-known LC oscillators. The direct injection-locking scheme features wide locking ranges, a very low input capacitance, and highest frequency capability. The direct locking and the tradeoff between power consumption and tank quality factor is verified through three test circuits in 0.13-/spl mu/m standard CMOS, aiming at input frequency ranges of 50, 40, and 15 GHz. The 40- and 50-GHz dividers consume 3 mW with locking ranges of 80 MHz and 1.5 GHz. The 15-GHz divider consumes 23 mW and features a locking range of 2.8 GHz.

298 citations

Journal ArticleDOI
TL;DR: In this article, the treatment of injection-locked frequency dividers (ILFDs) and regenerative systems is described, and the utility of the model is demonstrated in the calculation of both the steady-state and dynamic properties of ILFD systems, and subsequent computation of the corresponding phase noise spectrum.
Abstract: Injection-locked frequency dividers (ILFDs) are versatile analog circuit blocks used, for example, within phase-locked loops (PLLs). An important attribute is substantially lower power consumption relative to their digital counterparts. The model described in this paper unifies the treatment of injection-locked and regenerative systems. It also provides useful design insights by clarifying the nature and role of the nonlinearity present in many mixer-based frequency conversion circuits. The utility of the model is demonstrated in the calculation of both the steady-state and dynamic properties of ILFD systems, and the subsequent computation of the corresponding phase noise spectrum. Illustrative circuit examples show close correspondence between theory and simulation. Finally, measurement results from a 5.4-GHz divide-by-2 ILFD fabricated in 0.24-/spl mu/m CMOS show close correspondence between experiment and theory.

251 citations

Journal ArticleDOI
TL;DR: Compared with the case of the single-ended injection, the locking range of the frequency divider almost doubles when multiple-input injection with optimum phases is utilized and the experimental results exhibit good agreement with the theoretical derivation and the circuit simulation.
Abstract: In this paper, the locking range of the injection-locked ring oscillators is investigated. To improve the injection efficiency and the locking range for superharmonic frequency division, a multiple-injection technique is proposed. Using a 0.18-mum CMOS process, a wideband frequency divider based on a three-stage ring oscillator is implemented for demonstration. With a tunable free-running frequency, the fabricated circuit provides 2:1 and 4:1 frequency division with a single-ended input signal ranging from 13 to 25 and 30 to 45 GHz, respectively. Compared with the case of the single-ended injection, the locking range of the frequency divider almost doubles when multiple-input injection with optimum phases is utilized. The experimental results exhibit good agreement with the theoretical derivation and the circuit simulation.

131 citations

Journal ArticleDOI
TL;DR: This work uses a generalized Adler's equation for large injections to analyze the operation of injection-locked ring oscillators and derive expressions for the input lock range, and discovers that injection in the correct progressive phases greatly widens the lock range.
Abstract: Injection-locked oscillators divide at very high frequencies and consume low power. They are not widely deployed in commercial products because they operate over small, often unpredictable, ranges of input frequencies. Ring oscillators as dividers are interesting because they are compact, and capable of a multi-phase output, including quadrature phases. Using a generalized Adler's equation for large injections, we analyze the operation of injection-locked ring oscillators and derive expressions for the input lock range. We discover that injection in the correct progressive phases greatly widens the lock range; all that is needed is the right delay cell circuit, and the injection input in one or two phases. As proof of concept, divide-by-two and six prototypes are built. The measured lock range spans DC to 1.5 the free-running frequency, the highest reported to date.

128 citations

Journal ArticleDOI
Joonsung Bae1, Long Yan1, Hoi-Jun Yoo1
TL;DR: An energy-efficient 920 MHz FSK transceiver for wireless body sensor network (BSN) applications is implemented in 0.18 μm CMOS technology with 0.7 V supply and a transceiver architecture based on injection-locked frequency divider (ILFD) is proposed for the low energy consumption.
Abstract: An energy-efficient 920 MHz FSK transceiver for wireless body sensor network (BSN) applications is implemented in 0.18 μm CMOS technology with 0.7 V supply. A transceiver architecture based on injection-locked frequency divider (ILFD) is proposed for the low energy consumption. In the receiver, the ILFD in the signal path converts the received FSK signal to amplitude-modulated signal which is applied to the next envelope detector. In the transmitter, the ILFD is used as digitally-controlled oscillator (DCO) which directly modulates the FSK signal with digital data. The DCO replaces the frequency synthesizer to eliminate the crystal oscillator (XO), which leads to reduce power consumption and cost. The transceiver can detect whether injection locking occurs or not, and calibrates the frequency drift of DCO over temperature variation thanks to ILFD based architecture. The receiver and transmitter consume 420 μW and 700 μW , respectively, at - 10 dBm output power with a data rate of 5 Mb/s, corresponding to energy consumption of 84 pJ per received bit and 140 pJ per transmitted bit.

127 citations