scispace - formally typeset
Search or ask a question
Author

A. Hidalgo

Other affiliations: Urbana University
Bio: A. Hidalgo is an academic researcher from Spanish National Research Council. The author has contributed to research in topics: Cement & Portland cement. The author has an hindex of 17, co-authored 31 publications receiving 896 citations. Previous affiliations of A. Hidalgo include Urbana University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the use of OPC cement binders with high silica content produces low pH pore waters and the microstructure of these cement pastes is different from the conventional OPC ones, generating C-S-H gels with lower CaO/SiO2 ratios that possibly bind alkali ions.
Abstract: One of the most accepted engineering construction concepts of underground repositories for high radioactive waste considers the use of low-pH cementitious materials. This paper deals with the design of those based on Ordinary Portland Cements with high contents of silica fume and/or fly ashes that modify most of the concrete “standard” properties, the pore fluid composition and the microstructure of the hydrated products. Their resistance to long-term groundwater aggression is also evaluated. The results show that the use of OPC cement binders with high silica content produces low-pH pore waters and the microstructure of these cement pastes is different from the conventional OPC ones, generating C–S–H gels with lower CaO/SiO2 ratios that possibly bind alkali ions. Leaching tests show a good resistance of low-pH concretes against groundwater aggression although an altered front can be observed.

140 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of the type of cement on carbonation at high CO2 pressures (CO2 at 20 MPa and 318 K) and to improve the understanding of the effects on the microstructure and physicochemical properties of binders.
Abstract: Supercritical carbonation of Portland cement binders was studied to analyse the influence of the type of cement on carbonation at high CO2 pressures (CO2 at 20 MPa and 318 K) and to improve the understanding of the effects on the microstructure and physicochemical properties of binders The results were compared with those obtained in a natural exposure Microstructural properties of supercritically and atmospherically carbonated Portland cement binders were examined using the complementary analytical techniques of FTIR, TG-DTA, and BSEM-EDX Supercritically carbonated binders showed a microstructure based on a more polymerized and lower Ca form of CSH gel, formed by decalcification of high-Ca form of CSH gel Results suggested that during the treatment at artificially intensified conditions, the crystallized calcium carbonate came mainly from the carbonation of the CSH gel, and at atmospheric conditions, from the carbonation of the portlandite phase

117 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of leaching on the microstructure of Portland cement binders were analyzed using FTIR spectroscopy, TG-DTA thermal analysis, low temperature nitrogen gas sorption and geochemical modelling.
Abstract: When concrete is exposed to the elements, its underlying microstructure can be attacked by a variety of aggressive agents; for example, rainwater and groundwater. The knowledge of concrete resistance to long term water aggression is necessary for predictions of their performance in different environments. This study aims to analyse the effects of leaching on the microstructure of Portland cement binders. Leaching of cement pastes was performed by an accelerated extraction leaching test that produces significant degradation and helps to achieve equilibrium or near-equilibrium conditions between the leachant medium and cement paste. FTIR spectroscopy, TG-DTA thermal analysis, low temperature nitrogen gas sorption, and geochemical modelling were used to characterize the microstructural changes produced in cement pastes at different equilibrium pHs reached during the leaching process.

89 citations

Journal ArticleDOI
TL;DR: The most widely identified degradation process suffered by calcium aluminate cement (CAC) is the so-called conversion of hexagonal calcine hydrate to cubic form, which is usually followed by an increase in porosity determined by the different densities of these hydrates and the subsequent loss of strength.
Abstract: The most widely identified degradation process suffered by calcium aluminate cement (CAC) is the so-called conversion of hexagonal calcium aluminate hydrate to cubic form. This conversion is usually followed by an increase in porosity determined by the different densities of these hydrates and the subsequent loss of strength. Mixes of calcium aluminate cement (CAC) and silica fume (SF) or fly ash (FA) represent an interesting alternative for the stabilization of CAC hydrates, which might be attributed to a microstructure based mainly on aluminosilicates. This paper deals with the microstructure of cement pastes fabricated with mixtures CAC-SF and CAC-FA and its evolution over time. Thermal analysis (DTA/TG), X-ray diffraction (XRD) and mid-infrared spectroscopy (FTIR) have been used to assess the microstructure of these formulations.

85 citations

Journal ArticleDOI
TL;DR: The work presented herein provides a key example of how the conformational differences exhibited by these ligands within the binding pockets of the ribosome and of those enzymes involved in bacterial resistance can, in favorable cases, be exploited for designing new antibiotic derivatives with improved activity in resistant strains.
Abstract: The emergence of bacterial resistance to the major classes of antibiotics has become a serious problem over recent years. For aminoglycosides, the major biochemical mechanism for bacterial resistance is the enzymatic modification of the drug. Interestingly, in several cases, the oligosaccharide conformation recognized by the ribosomic RNA and the enzymes responsible for the antibiotic inactivation is remarkably different. This observation suggests a possible structure-based chemical strategy to overcome bacterial resistance; in principle, it should be possible to design a conformationally locked oligosaccharide that still retains antibiotic activity but that is not susceptible to enzymatic inactivation. To explore the scope and limitations of this strategy, we have synthesized several aminoglycoside derivatives locked in the ribosome- bound "bioactive" conformation. The effect of the structural preorganization on RNA binding, together with its influence on the aminoglycoside inactivation by several enzymes involved in bacterial resistance, has been studied. Our results indicate that the conformational constraint has a modest effect on their interaction with ribosomal RNA. In contrast, it may display a large impact on their enzymatic inactivation. Thus, the work presented herein provides a key example of how the conformational differences exhibited by these ligands within the binding pockets of the ribosome and of those enzymes involved in bacterial resistance can, in favorable cases, be exploited for designing new antibiotic derivatives with improved activity in resistant strains.

77 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The use of silica-rich SCMs influences the amount and kind of hydrates formed and thus the volume, the porosity and finally the durability of these materials.
Abstract: The use of silica rich SCMs influences the amount and kind of hydrates formed and thus the volume, the porosity and finally the durability of these materials. At the levels of substitution normally used, major changes are the lower Ca/Si ratio in the C–S–H phase and consumption of portlandite. Alumina-rich SCMs increase the Al-uptake in C–S–H and the amounts of aluminate containing hydrates. In general the changes in phase assemblages are well captured by thermodynamic modelling, although better knowledge of the C–S–H is needed. At early ages, “filler” effects lead to an increased reaction of the clinker phases. Reaction of SCMs starts later and is enhanced with pH and temperature. Composition, fineness and the amount of glassy phase play also an important role. Due to the diverse range of SCM used, generic relations between composition, particle size, exposure conditions as temperature or relative humidity become increasingly crucial.

1,920 citations

Journal ArticleDOI
TL;DR: In this paper, the mechanisms that govern the transport of ions, moisture, and gas are described, and different chemical degradation phenomena are reviewed, such as sulfate attack from external sources and formation of ettringite and thaumasite.
Abstract: While interacting with its service environment, concrete often undergoes significant alterations that often have significant adverse consequences on its engineering properties. As a result, the durability of hydrated cement systems and their constituent phases has received significant attention from scientists and engineers. Cement paste deterioration by detrimental chemical reactions is discussed. First, the mechanisms that govern the transport of ions, moisture and gas are described. Then, different chemical degradation phenomena are reviewed. Microstructural alterations resulting from exposure to chlorides and carbon dioxide are discussed. Sulfate attack from external sources is described including processes resulting in the formation of ettringite and thaumasite. The mineralogy of Portland cement is sensitive to temperature and thermal cycling, particularly during the early hydration period.

562 citations

Journal ArticleDOI
TL;DR: In this paper, the effects on microstructure and composition of cement paste caused by the most common drying techniques, including direct drying (oven, microwave, D-Drying, P-drying, and freeze drying) and solvent exchange methods, are reviewed.
Abstract: Arresting of cement hydration, followed by drying, is necessary to prepare samples for many techniques of microstructural analysis. This paper reviews the effects on microstructure and composition of cement paste caused by the most common drying techniques, including direct drying (oven, microwave, D-drying, P-drying, and freeze drying) and solvent exchange methods. Supercritical drying is proposed as a method that could effectively preserve the cement microstructure, but which has not been applied to cementitious materials. Experiments are reported that systematically quantify the effects of drying from several solvents, freeze drying, and direct drying of young paste. Freeze drying is an effective drying method to prepare samples for chemical analysis, but it might change the microstructure. Isopropanol exchange followed by ambient drying is the best known method for preserving the microstructure with minimal effect on the composition of cement.

539 citations

Journal ArticleDOI
TL;DR: In this paper, the carbonation mechanism of CH and C-S-H within type-I cement-based materials in terms of kinetics, microstructure changes and water released from hydrates during carbonation was investigated.
Abstract: The purpose of this article is to investigate the carbonation mechanism of CH and C-S-H within type-I cement-based materials in terms of kinetics, microstructure changes and water released from hydrates during carbonation. Carbonation tests were performed under accelerated conditions (10% CO2, 25 °C and 65 ± 5% RH). Carbonation profiles were assessed by destructive and non-destructive methods such as phenolphthalein spray test, thermogravimetric analysis, and mercury intrusion porosimetry (destructive), as well as gamma-ray attenuation (non-destructive). Carbonation penetration was carried out at different ages from 1 to 16 weeks of CO2 exposure on cement pastes of 0.45 and 0.6 w/c, as well as on mortar specimens (w/c = 0.50 and s/c = 2). Combining experimental results allowed us to improve the understanding of C-S-H and CH carbonation mechanism. The variation of molar volume of C-S-H during carbonation was identified and a quantification of the amount of water released during CH and C-S-H carbonation was performed.

527 citations

Journal ArticleDOI
TL;DR: In uses that do not require steel reinforcement, and in locations where the MgO can be sourced at a competitive price, a detailed understanding of these systems enables their specification, design, and selection as advanced engineering materials with a strongly defined chemical basis.
Abstract: This review examines the detailed chemical insights that have been generated through 150 years of work worldwide on magnesium-based inorganic cements, with a focus on both scientific and patent literature. Magnesium carbonate, phosphate, silicate-hydrate, and oxysalt (both chloride and sulfate) cements are all assessed. Many such cements are ideally suited to specialist applications in precast construction, road repair, and other fields including nuclear waste immobilization. The majority of MgO-based cements are more costly to produce than Portland cement because of the relatively high cost of reactive sources of MgO and do not have a sufficiently high internal pH to passivate mild steel reinforcing bars. This precludes MgO-based cements from providing a large-scale replacement for Portland cement in the production of steel-reinforced concretes for civil engineering applications, despite the potential for CO2 emissions reductions offered by some such systems. Nonetheless, in uses that do not require steel reinforcement, and in locations where the MgO can be sourced at a competitive price, a detailed understanding of these systems enables their specification, design, and selection as advanced engineering materials with a strongly defined chemical basis.

490 citations