scispace - formally typeset
Search or ask a question
Author

A. I. Díaz

Bio: A. I. Díaz is an academic researcher from Autonomous University of Madrid. The author has contributed to research in topics: Galaxy & Star formation. The author has an hindex of 15, co-authored 42 publications receiving 1338 citations. Previous affiliations of A. I. Díaz include Spanish National Research Council.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the most widely used empirical oxygen calibrations, O3N2 and N2, by using new direct abundance measurements are reviewed, and the expected uncertainty of these calibrations as a function of the index value or abundance derived is analyzed.
Abstract: The use of integral field spectroscopy is since recently allowing to measure the emission line fluxes of an increasingly large number of star-forming galaxies, both locally and at high redshift. Many studies have used these fluxes to derive the gas-phase metallicity of the galaxies by applying the so-called strong-line methods. However, the metallicity indicators that these datasets use were empirically calibrated using few direct abundance data points (T_e-based measurements). Furthermore, a precise determination of the prediction intervals of these indicators is commonly lacking in these calibrations. Such limitations might lead to systematic errors in determining the gas-phase metallicity, especially at high redshift, which might have a strong impact on our understanding of the chemical evolution of the Universe. The main goal of this study is to review the most widely used empirical oxygen calibrations, O3N2 and N2, by using new direct abundance measurements. We pay special attention to (1) the expected uncertainty of these calibrations as a function of the index value or abundance derived and (2) the presence of possible systematic offsets. This is possible thanks to the analysis of the most ambitious compilation of T_e-based H II regions to date. This new dataset compiles the Te-based abundances of 603 H II regions extracted from the literature but also includes new measurements from the CALIFA survey. Besides providing new and improved empirical calibrations for the gas abundance, we also present a comparison between our revisited calibrations with a total of 3423 additional CALIFA H II complexes with abundances derived using the ONS calibration from the literature. The combined analysis of T_e-based and ONS abundances allows us to derive their most accurate calibration to date for both the O3N2 and N2 single-ratio indicators, in terms of all statistical significance, quality, and coverage of the parameters space. In particular, we infer that these indicators show shallower abundance dependencies and statistically significant offsets compared to others'. The O3N2 and N2 indicators can be empirically applied to derive oxygen abundances calibrations from either direct abundance determinations with random errors of 0.18 and 0.16, respectively, or from indirect ones (but based on a large amount of data), reaching an average precision of 0.08 and 0.09 dex (random) and 0.02 and 0.08 dex (systematic; compared to the direct estimations), respectively.

479 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented the results on the study of the global and local M-Z relation based on the first data available from the CALIFA survey (150 galaxies) and computed the integrated and spatially resolved stellar masses and surface densities, based on SDSS photometric data.
Abstract: We present the results on the study of the global and local M-Z relation based on the first data available from the CALIFA survey (150 galaxies). This survey provides integral field spectroscopy of the complete optical extent of each galaxy (up to 2-3 effective radii), with enough resolution to separate individual HII regions and/or aggregations. Nearly $\sim$3000 individual HII regions have been detected. The spectra cover the wavelength range between [OII]3727 and [SII]6731, with a sufficient signal-to-noise to derive the oxygen abundance and star-formation rate associated with each region. In addition, we have computed the integrated and spatially resolved stellar masses (and surface densities), based on SDSS photometric data. We explore the relations between the stellar mass, oxygen abundance and star-formation rate using this dataset. We derive a tight relation between the integrated stellar mass and the gas-phase abundance, with a dispersion smaller than the one already reported in the literature ($\sigma_{\Delta{\rm log(O/H)}}=$0.07 dex). Indeed, this dispersion is only slightly larger than the typical error derived for our oxygen abundances. However, we do not find any secondary relation with the star-formation rate, other than the one induced due to the primary relation of this quantity with the stellar mass. We confirm the result using the $\sim$3000 individual HII regions, for the corresponding local relations. Our results agree with the scenario in which gas recycling in galaxies, both locally and globally, is much faster than other typical timescales, like that of gas accretion by inflow and/or metal loss due to outflows. In essence, late-type/disk dominated galaxies seem to be in a quasi-steady situation, with a behavior similar to the one expected from an instantaneous recycling/closed-box model.

220 citations

Journal ArticleDOI
TL;DR: In this article, the authors explore the connections between the ionization conditions and the properties of the overall underlying stellar population (ionizing or not-ionizing) in H II regions, in order to uncover the actual physical connection between them.
Abstract: Context. H II regions in galaxies are the sites of star formation, so they are special places for understanding the build-up of stellar mass in the universe. The line ratios of this ionized gas are frequently used to characterize the ionization conditions. In particular, the oxygen abundances are assumed to trace the chemical enrichment of galaxies. Aims. We explore the connections between the ionization conditions and the properties of the overall underlying stellar population (ionizing or not-ionizing) in H II regions, in order to uncover the actual physical connection between them. Methods. We use the H II regions catalog from the CALIFA survey, which is the largest in existence with more than 5000 H II regions, to explore their distribution across the classical [O III] lambda 5007/H beta vs. [N II] lambda 6583/H alpha diagnostic diagram, and the way it depends on the oxygen abundance, ionization parameter, electron density, and dust attenuation. The location of H II regions within this diagram is compared with predictions from photoionization models. Finally, we explore the dependence of the location within the diagnostic diagram on the properties of the host galaxies, the galactocentric distances, and the properties of the underlying stellar population. Results. The H II regions with weaker ionization strengths and more metal-rich are located in the bottom righthand area of the diagram. In contrast, those regions with stronger ionization strengths and more metal poor are located in the upper lefthand end of the diagram. Photoionization models per se do not predict these correlations between the parameters and the line ratios. The H II regions located in earlier-type galaxies, closer to the center and formed in older and more metal-rich regions of the galaxies are located in the bottom-right area of the diagram. On the other hand, those regions located in late-type galaxies in the outer regions of the disks and formed on younger and more metal-poor regions lie in the top lefthand area of the diagram. The two explored line ratios show strong correlations with the age and metallicity of the underlying stellar population. Conclusions. These results indicate that although H II regions are short-lived events, they are affected by the total underlying stellar population. One may say that H II regions keep a memory of the stellar evolution and chemical enrichment that have left an imprint on both the ionizing stellar population and the ionized gas.

101 citations

Journal ArticleDOI
TL;DR: In this paper, the existence of a local relation between galaxy surface mass density, gas metallicity, and star-formation rate density using spatially-resolved optical spectroscopy of HII regions in the local Universe was demonstrated.
Abstract: We demonstrate the existence of a -local- relation between galaxy surface mass density, gas metallicity, and star-formation rate density using spatially-resolved optical spectroscopy of HII regions in the local Universe. One of the projections of this distribution, -the local mass-metallicity relation- extends over three orders of magnitude in galaxy mass density and a factor of eight in gas metallicity. We explain the new relation as the combined effect of the differential radial distributions of mass and metallicity in the discs of galaxies, and a selective star-formation efficiency. We use this local relation to reproduce -with remarkable agreement- the total mass-metallicity relation seen in galaxies, and conclude that the latter is a scale-up integrated effect of a local relation, supporting the inside-out growth and downsizing scenarios of galaxy evolution.

101 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the Hii regions catalogue from the CALIFA survey to explore their distribution across the classical [OIII/Hbeta vs. [NII]/Halpha diagnostic diagram, and how it depends on the oxygen abundance, ionization parameter, electron density, and dust attenuation.
Abstract: H ii regions in galaxies are the sites of star formation and thus particular places to understand the build-up of stellar mass in the universe. The line ratios of this ionized gas are frequently used to characterize the ionization conditions. We use the Hii regions catalogue from the CALIFA survey (~5000 H ii regions), to explore their distribution across the classical [OIII]/Hbeta vs. [NII]/Halpha diagnostic diagram, and how it depends on the oxygen abundance, ionization parameter, electron density, and dust attenuation. We compared the line ratios with predictions from photoionization models. Finally, we explore the dependences on the properties of the host galaxies, the location within those galaxies and the properties of the underlying stellar population. We found that the location within the BPT diagrams is not totally predicted by photoionization models. Indeed, it depends on the properties of the host galaxies, their galactocentric distances and the properties of the underlying stellar population. These results indicate that although H ii regions are short lived events, they are affected by the total underlying stellar population. One may say that H ii regions keep a memory of the stellar evolution and chemical enrichment that have left an imprint on the both the ionizing stellar population and the ionized gas

94 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, an intermediate-resolution optical spectrophotometry of 65 galaxies obtained in support of the Spitzer Infrared Nearby Galaxies Survey (SINGS) is presented.
Abstract: We present intermediate-resolution optical spectrophotometry of 65 galaxies obtained in support of the Spitzer Infrared Nearby Galaxies Survey (SINGS). For each galaxy we obtain a nuclear, circumnuclear, and semi-integrated optical spectrum designed to coincide spatially with mid- and far-infrared spectroscopy from the Spitzer Space Telescope. We make the reduced, spectrophotometrically calibrated one-dimensional spectra, as well as measurements of the fluxes and equivalent widths of the strong nebular emission lines, publically available. We use optical emission-line ratios measured on all three spatial scales to classify the sample into star-forming, active galactic nuclei (AGNs), and galaxies with a mixture of star formation and nuclear activity. We find that the relative fraction of the sample classified as star forming versus AGN is a strong function of the integrated light enclosed by the spectroscopic aperture. We supplement our observations with a large database of nebular emission-line measurements of individual H II regions in the SINGS galaxies culled from the literature. We use these ancillary data to conduct a detailed analysis of the radial abundance gradients and average H II-region abundances of a large fraction of the sample. We combine these results with our new integrated spectra to estimate the central and characteristic (globally averaged) gas-phase oxygen abundances of all 75 SINGS galaxies. We conclude with an in-depth discussion of the absolute uncertainty in the nebular oxygen abundance scale.

624 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigate a class of rapidly growing emission line galaxies, known as "Green Peas", which were first noted by volunteers in the Galaxy Zoo project because of their peculiar bright green colour and small size, unresolved in SDSS imaging.
Abstract: We investigate a class of rapidly growing emission line galaxies, known as “Green Peas,” first noted by volunteers in the Galaxy Zoo project because of their peculiar bright green colour and small size, unresolved in SDSS imaging. Their appearance is due to very strong optical emission lines, namely [O III] �5007 ˚ A, with an unusually large equivalent width of up to �1000 ˚ A. We discuss a well-defined sample of 251 colour-selected ob jects, most of which are strongly star forming, although there are some AGN interlopers including 8 newly discovered Narrow Line Seyfert 1 galaxies. The star-forming Peas are low mass galaxies (M� 10 8.5 10 10 M⊙) with high star formation rates (� 10 M⊙yr −1 ), low metallicities (log[O/H] + 12 �8.7) and low reddening (E(B V) 6 0.25) and they reside in low density environments. They have some of the highest specific star for mation rates (up to � 10 −8 yr −1 ) seen in the local Universe, yielding doubling times for their stellar mass of hundreds of Myrs. The few star-forming Peas with HST imaging appear to have several clumps of bright star-forming regions and low surface density features that may indicate recent or ongoing mergers. The Peas are similar in size, mass, luminosity and metallicity to Luminous Blue Compact Galaxies. They are also similar to high redshift UV-luminous galaxies, e.g., Lymanbreak galaxies and Lyman-� emitters, and therefore provide a local laboratory with which to study the extreme star formation processes that occur in high-redshift galaxies. Studying starbursting galaxies as a function of redshift is essential to u nderstanding the build up of stellar mass in the Universe.

565 citations

Journal ArticleDOI
TL;DR: In this paper, the most widely used empirical oxygen calibrations, O3N2 and N2, by using new direct abundance measurements are reviewed, and the expected uncertainty of these calibrations as a function of the index value or abundance derived is analyzed.
Abstract: The use of integral field spectroscopy is since recently allowing to measure the emission line fluxes of an increasingly large number of star-forming galaxies, both locally and at high redshift. Many studies have used these fluxes to derive the gas-phase metallicity of the galaxies by applying the so-called strong-line methods. However, the metallicity indicators that these datasets use were empirically calibrated using few direct abundance data points (T_e-based measurements). Furthermore, a precise determination of the prediction intervals of these indicators is commonly lacking in these calibrations. Such limitations might lead to systematic errors in determining the gas-phase metallicity, especially at high redshift, which might have a strong impact on our understanding of the chemical evolution of the Universe. The main goal of this study is to review the most widely used empirical oxygen calibrations, O3N2 and N2, by using new direct abundance measurements. We pay special attention to (1) the expected uncertainty of these calibrations as a function of the index value or abundance derived and (2) the presence of possible systematic offsets. This is possible thanks to the analysis of the most ambitious compilation of T_e-based H II regions to date. This new dataset compiles the Te-based abundances of 603 H II regions extracted from the literature but also includes new measurements from the CALIFA survey. Besides providing new and improved empirical calibrations for the gas abundance, we also present a comparison between our revisited calibrations with a total of 3423 additional CALIFA H II complexes with abundances derived using the ONS calibration from the literature. The combined analysis of T_e-based and ONS abundances allows us to derive their most accurate calibration to date for both the O3N2 and N2 single-ratio indicators, in terms of all statistical significance, quality, and coverage of the parameters space. In particular, we infer that these indicators show shallower abundance dependencies and statistically significant offsets compared to others'. The O3N2 and N2 indicators can be empirically applied to derive oxygen abundances calibrations from either direct abundance determinations with random errors of 0.18 and 0.16, respectively, or from indirect ones (but based on a large amount of data), reaching an average precision of 0.08 and 0.09 dex (random) and 0.02 and 0.08 dex (systematic; compared to the direct estimations), respectively.

479 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented the largest and most homogeneous catalog of H ii regions and associations compiled so far, consisting of more than 7000 ionized regions, extracted from 306 galaxies observed by the CALIFA survey.
Abstract: We present the largest and most homogeneous catalog of H ii regions and associations compiled so far The catalog comprises more than 7000 ionized regions, extracted from 306 galaxies observed by the CALIFA survey We describe the procedures used to detect, select, and analyze the spectroscopic properties of these ionized regions In the current study we focus on characterizing of the radial gradient of the oxygen abundance in the ionized gas, based on the study of the deprojecteddistribution of H ii regions We found that all galaxies without clear evidence of an interaction present a common gradient in the oxygen abundance, with a characteristic slope of α_O/H = −01 dex/r_e between 03 and 2 disk effective radii (r_e), and a scatter compatible with random fluctuations around this value, when the gradient is normalized to the disk effective radius The slope is independent of morphology, the incidence of bars, absolute magnitude, or mass Only those galaxies with evidence of interactions and/or clear merging systems present a significantly shallower gradient, consistent with previous results The majority of the 94 galaxies with H ii regions detected beyond two disk effective radii present a flattening in the oxygen abundance The flattening is statistically significant We cannot provide a conclusive answer regarding the origin of this flattening However, our results indicate that its origin is most probably related to the secular evolution of galaxies Finally, we find a drop/truncation of the oxygen abundance in the inner regions for 26 of the galaxies All of them are non-interacting, mostly unbarred Sb/Sbc galaxies This feature is associated with a central star-forming ring, which suggests that both features are produced by radial gas flows induced by resonance processes Our result suggests that galaxy disks grow inside-out, with metal enrichment driven by the local star formation history and with a small variation galaxy-by-galaxy At a certain galactocentric distance, the oxygen abundance seems to be correlated well with the stellar mass density and total stellar mass of the galaxies, independently of other properties of the galaxies Other processes, such as radial mixing and inflows/outflows seem to have a limited effect on shaping of the radial distribution of oxygen abundances, although they are not ruled out

474 citations

01 Jan 2011
TL;DR: In this paper, the authors proposed a method to find the minimum number of stars in the UHRA data set, which is not available in the data set available in this paper.
Abstract: Original article can be found at: http://www.iop.org/EJ/journal/1538-3881 Copyright American Astronomical Society. DOI: 10.1088/0004-6256/137/6/4670 [Full text of this article is not available in the UHRA]

371 citations