scispace - formally typeset
Search or ask a question
Author

A. J. Barkovich

Bio: A. J. Barkovich is an academic researcher from University of California, San Francisco. The author has contributed to research in topics: Lipoma & Intracranial Lipoma. The author has an hindex of 3, co-authored 3 publications receiving 587 citations.

Papers
More filters
Journal Article
TL;DR: In this paper, the anatomic and embryologic features of intracranial lipomas were examined and the relative frequencies of the locations of the lipomas correspond to the temporal sequence of dissolution of meninx primitiva, the mesenchymal anlage of the meninges.
Abstract: Intracranial lipomas are uncommon lesions whose development remains poorly understood. To clarify the anatomic and embryologic features of intracranial lipomas, we retrospectively reviewed the MR scans of 42 patients with 44 intracranial lipomas. Interhemispheric lipomas were the most common, accounting for 45% of cases. The remainder of the lesions were clustered in the quadrigeminal/superior cerebellar (25%), suprasellar/interpeduncular (14%), cerebellopontine angle (9%), and sylvian (5%) cisterns. Fifty-five percent of the lesions were associated with brain malformations of varying degrees. Intracranial vessels and nerves were noted to course through 16 (36%) of the lesions. The relative frequencies of the locations of the lipomas correspond to the temporal sequence of dissolution of the meninx primitiva, the mesenchymal anlage of the meninges. This finding supports the concept of lipoma formation as a result of abnormal persistence and maldifferentiation of the meninx. This embryologic concept of the development of intracranial lipomas explains the high frequency of callosal and other brain hypoplasias. Intracranial lipomas are neither hamartomas nor true neoplasms; rather, they are congenital malformations.

251 citations

Journal ArticleDOI
TL;DR: Genotype-phenotype analysis in children with lissencephaly associated with mutations of different genes found consistent differences in the gyral patterns, with the malformation more severe posteriorly in individuals with LIS1 mutations and more severe anteriorly in Individuals with XLIS mutations.
Abstract: Background: Classical lissencephaly or “smooth brain” is a human brain malformation that consists of diffuse agyria and pachygyria. Two genes associated with classical lissencephaly have recently been cloned— LIS1 from chromosome 17p13.3 and XLIS (also called DCX ) from Xq22.3-q23. Objective: We performed genotype-phenotype analysis in children with lissencephaly associated with mutations of different genes. Methods: We compared the phenotype, especially brain imaging studies, in a series of 48 children with lissencephaly, including 12 with Miller-Dieker syndrome (MDS), which is associated with large deletions of LIS1 and other genes in the region, 24 with isolated lissencephaly sequence caused by smaller LIS1 deletions or mutations, and 12 with isolated lissencephaly sequence caused by XLIS mutations. Results: We found consistent differences in the gyral patterns, with the malformation more severe posteriorly in individuals with LIS1 mutations and more severe anteriorly in individuals with XLIS mutations. Thus, mutations of LIS1 are associated with a posterior-to-anterior gradient of lissencephaly, whereas mutations of XLIS are associated with an anterior-to-posterior gradient. We also confirmed differences in severity between MDS and ILS17. Hypoplasia of the cerebellar vermis proved to be more common with XLIS mutations. Conclusion: It is often possible to predict the gene mutation from careful review of brain imaging studies.

208 citations

Journal ArticleDOI
TL;DR: The relative frequencies of the locations of the lipomas correspond to the temporal sequence of dissolution of the meninx primitiva, the mesenchymal anlage of the Meninges, and this finding supports the concept of lipoma formation as a result of abnormal persistence and maldifferentiation of theMeninx.
Abstract: Intracranial lipomas are uncommon lesions whose development remains poorly understood. To clarify the anatomic and embryologic features of intracranial lipomas, we retrospectively reviewed the MR scans of 42 patients with 44 intracranial lipomas. Interhemispheric lipomas were the most common, accounting for 45% of cases. The remainder of the lesions were clustered in the quadrigeminal/superior cerebellar (25%), suprasellar/interpeduncular (14%), cerebellopontine angle (9%), and sylvian (5%) cisterns. Fifty-five percent of the lesions were associated with brain malformations of varying degrees. Intracranial vessels and nerves were noted to course through 16 (36%) of the lesions. The relative frequencies of the locations of the lipomas correspond to the temporal sequence of dissolution of the meninx primitiva, the mesenchymal anlage of the meninges. This finding supports the concept of lipoma formation as a result of abnormal persistence and maldifferentiation of the meninx. This embryologic concept of the development of intracranial lipomas explains the high frequency of callosal and other brain hypoplasias. Intracranial lipomas are neither hamartomas nor true neoplasms; rather, they are congenital malformations.

156 citations


Cited by
More filters
Journal ArticleDOI
01 May 2012-Brain
TL;DR: This review addresses recent changes in the perception of malformations of cerebral cortical development and proposes a modified classification based upon updates in the knowledge of cerebral cortex development.
Abstract: Malformations of cerebral cortical development include a wide range of developmental disorders that are common causes of neurodevelopmental delay and epilepsy. In addition, study of these disorders contributes greatly to the understanding of normal brain development and its perturbations. The rapid recent evolution of molecular biology, genetics and imaging has resulted in an explosive increase in our knowledge of cerebral cortex development and in the number and types of malformations of cortical development that have been reported. These advances continue to modify our perception of these malformations. This review addresses recent changes in our perception of these disorders and proposes a modified classification based upon updates in our knowledge of cerebral cortical development.

854 citations

Journal ArticleDOI
TL;DR: A revised classification based on the stage of development at which cortical development was first affected is proposed, using genotype, rather than phenotype, as the basis for classifying disorders wherever the genotype–phenotype relationship is adequately understood.
Abstract: Increasing recognition of malformations of cortical development and continuing improvements in imaging techniques, molecular biologic techniques, and knowledge of mechanisms of brain development have resulted in continual improvement of the understanding of these disorders. The authors propose a revised classification based on the stage of development (cell proliferation, neuronal migration, cortical organization) at which cortical development was first affected. The categories are based on known developmental steps, known pathologic features, known genetics (when possible), and, when necessary, neuroimaging features. In those cases in which the precise developmental and genetic features are uncertain, classification is based on known relationships among the genetics, pathologic features, and neuroimaging features. The major change since the prior classification has been a shift to using genotype, rather than phenotype, as the basis for classifying disorders wherever the genotype-phenotype relationship is adequately understood. Other substantial changes include more detailed classification of congenital microcephalies, particularly those in which the genes have been mapped or identified, and revised classification of congenital muscular dystrophies and polymicrogyrias. Information on genetic testing is also included. This classification allows a better conceptual understanding of the disorders, and the use of neuroimaging characteristics allows it to be applied to all patients without necessitating brain biopsy, as in pathology-based classifications.

747 citations

Journal ArticleDOI
TL;DR: The present report is the first to use phenotypic analysis of a knockout mouse to identify a gene associated with an X-linked human brain malformation, and concludes that mutation of ARX causes XLAG.
Abstract: Male embryonic mice with mutations in the X-linked aristaless-related homeobox gene (Arx) developed with small brains due to suppressed proliferation and regional deficiencies in the forebrain. These mice also showed aberrant migration and differentiation of interneurons containing γ-aminobutyric acid (GABAergic interneurons) in the ganglionic eminence and neocortex as well as abnormal testicular differentiation. These characteristics recapitulate some of the clinical features of X-linked lissencephaly with abnormal genitalia (XLAG) in humans. We found multiple loss-of-function mutations in ARX in individuals affected with XLAG and in some female relatives, and conclude that mutation of ARX causes XLAG. The present report is, to our knowledge, the first to use phenotypic analysis of a knockout mouse to identify a gene associated with an X-linked human brain malformation.

662 citations

Journal ArticleDOI
TL;DR: A revised classification of malformations of cortical development is proposed, based on the stage of development at which cortical development was first affected, which allows a better conceptual understanding of the disorders, while the component of neuroimaging characteristics allows it to be applied to all patients without necessitating brain biopsy.
Abstract: The many recent discoveries concerning the molecular biologic bases of malformations of cortical development and the discovery of new such malformations have rendered previous classifications out of date. A revised classification of malformations of cortical development is proposed, based on the stage of development (cell proliferation, neuronal migration, cortical organization) at which cortical development was first affected. The categories have been created based on known developmental steps, known pathologic features, known genetics (when possible), and, when necessary, neuroimaging features. In many cases, the precise developmental and genetic features are uncertain, so classification was made based on known relationships among the genetics, pathologic features, and neuroimaging features. A major change since the prior classification has been the elimination of the separation between diffuse and focal/multifocal malformations, based on the recognition that the processes involved in these processes are not fundamentally different; the difference may merely reflect mosaicism, X inactivation, the influence of modifying genes, or suboptimal imaging. Another change is the listing of fewer specific disorders to reduce the need for revisions; more detail is added in other smaller tables that list specific malformations and malformation syndromes. This classification is useful to the practicing physician in that its framework allows a better conceptual understanding of the disorders, while the component of neuroimaging characteristics allows it to be applied to all patients without necessitating brain biopsy, as in pathology-based classifications.

494 citations

Journal ArticleDOI
TL;DR: RT-PCR data show that DCDC2 localizes to the regions of the brain where fluent reading occurs, and RNA interference studies show that down-regulation alters neuronal migration.
Abstract: DYX2 on 6p22 is the most replicated reading disability (RD) locus. By saturating a previously identified peak of association with single nucleotide polymorphism markers, we identified a large polymorphic deletion that encodes tandem repeats of putative brain-related transcription factor binding sites in intron 2 of DCDC2. Alleles of this compound repeat are in significant disequilibrium with multiple reading traits. RT-PCR data show that DCDC2 localizes to the regions of the brain where fluent reading occurs, and RNA interference studies show that down-regulation alters neuronal migration. The statistical and functional studies are complementary and are consistent with the latest clinical imaging data for RD. Thus, we propose that DCDC2 is a candidate gene for RD.

403 citations