scispace - formally typeset
Search or ask a question
Author

A.J. Comer

Bio: A.J. Comer is an academic researcher from University of Limerick. The author has contributed to research in topics: Epoxy & Flexural strength. The author has an hindex of 11, co-authored 26 publications receiving 443 citations. Previous affiliations of A.J. Comer include Dublin City University & University of Oxford.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, carbon fiber-pEEK laminates, manufactured by laser-assisted ATP (LATP) and autoclave, are compared and it is shown that LATP cooling rates are extremely rapid and suggests full through-thickness melting of the pre-preg tape may not occur.
Abstract: Obtaining autoclave-level mechanical properties using in-situ consolidation of thermoplastic composites by Automated Tape Placement (ATP) is challenging. However, relatively recent availability of high quality ATP grade pre-preg material and tape heads equipped with more efficient heat sources (e.g. lasers) offers an opportunity to achieve improved mechanical properties and deposition rates. In the present study, carbon fibre–PEEK laminates, manufactured by laser-assisted ATP (LATP) and autoclave, are compared. Analysis of the through-thickness temperature distribution during LATP processing using thermocouples indicates that LATP cooling rates are extremely rapid and suggests full through-thickness melting of the pre-preg tape may not occur. Inadequate crystallinity, in conjunction with voids, compromised mechanical properties compared to autoclaved laminates but was beneficial in terms of the toughness of LATP laminates. Optimisation of pre-preg properties and processing parameters is required to realise the full potential of the LATP process in terms of mechanical properties, energy requirements, cost and deposition rates.

142 citations

Journal ArticleDOI
TL;DR: In this paper, the structural maintenance and repair of composite turbine blades is addressed for wind turbines with fiber-reinforced polymer composites, with their superior structural properties (e.g., high stiffness-to-weight) that allow lightweight and robust designs.
Abstract: Renewable energy sources such as wind energy—together with energy-efficient technologies—are essential to meet global energy demands and address climate change. Fiber-reinforced polymer composites, with their superior structural properties (e.g., high stiffness-to-weight) that allow lightweight and robust designs, play a significant part in the design and manufacture of modern wind turbines, especially turbine blades, for demanding service conditions. However, with the current global growth in onshore/offshore wind farm installations (with total global capacity of ∼282 GW by the end of 2012) and trend in wind turbine design (∼7–8 MW turbine capacity with ∼70–80 m blade length for offshore installations), one of the challenges that the wind energy industry faces with composite turbine blades is the aspect of structural maintenance and repair. Although wind turbines are typically designed for a service life of about 20 years, robust structural maintenance and repair procedures are essential to ensure the st...

77 citations

Journal ArticleDOI
TL;DR: In this paper, 3D Digital Image Correlation (DIC) was used to evaluate the evolution of deformation and strain in composite single lap-bonded joints prior to failure.

62 citations

Journal ArticleDOI
TL;DR: In this article, the effect of immersion in deionised water and in an organic liquid (diesel) on the interlaminar shear strength (ILSS) and glass transition temperature was determined.
Abstract: Glass-fibre reinforced polymer (GFRP) laminates were manufactured using Vacuum assisted Resin Transfer Moulding (VaRTM) with a range of thermosetting resins and an infusible thermoplastic resin as part of a comprehensive down-selection to identify suitable commercially available resin systems for the manufacture of marine vessels greater than 50 m in length. The effect of immersion in deionised water and in an organic liquid (diesel) on the interlaminar shear strength (ILSS) and glass transition temperature (Tg) was determined. The thermoplastic had the highest Tg of all materials tested and comparable ILSS properties to the epoxy. Immersion in water, however, caused larger reductions in ILSS properties of the thermoplastic compared to the other systems. SEM showed a transition from matrix-dominated failure in the dry condition to failure at the fibre-matrix interface in the wet and organic-wet specimens. The overall performance of the infusible thermoplastic is good when compared to well-established marine resin systems; however, the environmental performance could be improved if the thermoplastic resin is used in conjunction with a fibre sizing that is tailored for use with acrylic-based resin systems.

48 citations

Journal ArticleDOI
TL;DR: In this paper, a comparative study on the fracture toughness of carbon fiber/PEEK composites manufactured by autoclave and laser-assisted automated tape placement (LATP) is presented.
Abstract: A comparative study is presented on the fracture toughness of carbon fiber/PEEK composites manufactured by autoclave and laser-assisted automated tape placement (LATP). Formation of a good inter-laminar bond is always a concern in ATP due to the short time available for intimate contact development and polymer healing, yet our double cantilever beam (DCB) tests reveal 60- 80% higher Mode I fracture toughness for the LATP processed specimens than for the autoclave processed specimens. This magnitude of difference was unexpected, so specimens were further examined via differential scanning calorimetry, dynamic mechanical analysis, nano-indentation, and scanning electron microscopy. The results indicate that the LATP process has been very effective in heating and consolidating the surface of plies, creating an excellent bond. However, it has been less effective in processing the interior of plies, where a low crystallinity and poor fiber-matrix bonding are evident. The higher fracture toughness of the LATP processed specimens is also not solely due to a better bond, but is partially due to significant plastic deformation in the interior of plies during the DCB test. The findings indicate there is still considerable scope for optimizing the laser-assisted ATP process, before the optimum balance between strength and toughness is achieved at favorable lay-down speeds. V C 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41643.

46 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, an updated review of adhesively bonded joints in composite materials, which covers articles published from 2009 to 2016, is presented. And the main parameters that affect the performance of bonded joints such as surface treatment, joint configuration, geometric and material parameters, failure mode etc.

444 citations

Journal ArticleDOI
TL;DR: In this article, the most studied type of manufacturing defects, voids, form very often in processing of fiber-reinforced composites and have a considerable influence on physical and thermomechanical properties.
Abstract: Voids, the most studied type of manufacturing defects, form very often in processing of fiber-reinforced composites. Due to their considerable influence on physical and thermomechanical properties ...

404 citations

Journal ArticleDOI
TL;DR: In this article, the area of structural bonded repair of composites is broadly reviewed, starting from damage assessment to automation, to identify current scientific challenges and future opportunities, and the authors propose a robust, reliable and repeatable structural bond repair procedures to restore damaged composite components.

388 citations

Journal ArticleDOI
01 Jan 1966-Nature
TL;DR: Adhesion and AdhesivesEdited by Dr. R. Houwink and Dr. G. Salomon.
Abstract: Adhesion and Adhesives Edited by Dr. R. Houwink and Dr. G. Salomon. Vol. 1: Adhesives. Second, completely revised edition. Pp. xvi + 548. (Amsterdam, London and New York: Elsevier Publishing Company, 1965.) 135s.

348 citations

Dissertation
01 Jan 2011
TL;DR: In this paper, a study of rotor blade aerodynamic performances of wind turbine has been presented in which the aerodynamic effects changed by blade surface distribution as well as grid solution along the airfoil.
Abstract: The study of rotor blade aerodynamic performances of wind turbine has been presented in this thesis. This study was focused on aerodynamic effects changed by blade surface distribution as well as grid solution along the airfoil. The details of numerical calculation from Fluent were described to help predict accurate blade performance for comparison and discussion with available data. The direct surface curvature distribution blade design method for two-dimensional airfoil sections for wind turbine rotors have been discussed with the attentions to Euler equation, velocity diagram and the factors which affect wind turbine performance and applied to design a blade geometry close to an existing wind turbine blade, Eppler387, in order to argue that the blade surface drawn by direct surface curvature distribution blade design method contributes aerodynamic efficiency. The FLUENT calculation of NACA63-215V showed that the aerodynamic characteristics agreed well with the available experimental data at lower angles of attack although it was discontinuities in the surface curvature distributions between 0.7 and 0.8 in x/c. The discontinuities were so small that the blade performance could not be affected. The design of Eppler 387 blade performed to reduce drag force. The discontinuities of surface distribution matched the curve of the pressure coefficients. It was found in the curvature distribution that the leading edge pressure side had difficulties to connect to Bezier curve and also the trailing edge circle was never be tangent to the lines of trailing edge pressure and suction sides due to programming difficulties.

311 citations