scispace - formally typeset
Search or ask a question
Author

A. John

Bio: A. John is an academic researcher. The author has contributed to research in topics: Rumen & Reticulum. The author has an hindex of 4, co-authored 4 publications receiving 561 citations.
Topics: Rumen, Reticulum, Reticulorumen, Water flow, PEG ratio

Papers
More filters
Journal ArticleDOI
TL;DR: The presence of tannins in the control group increased net apparent absorption of threonine, valine, isoleucine and lysine, and reduced NEAA absorption by 10%, compared with PEG sheep.
Abstract: Sheep were used to evaluate the nutritional consequences of a low condensed-tannin concentration (22 g/kg dry matter (DM)) in lotus (Lotus corniculatus L.) (control group) compared with lotus given to sheep receiving intraruminal polyethylene glycol (PEG) infusion (PEG group). PEG selectively binds to tannins and prevents tannins from binding proteins. DM intakes (1430 (SE 28) g/d) and digestibility of energy (663 (SE 4.5) kJ/MJ intake) were similar for both groups but the apparent digestion of nitrogen was lower in the control sheep (0.70) than in the PEG sheep (0.78; P less than 0.001). The proportion of N apparently digested before the abomasum (i.e. in the rumen) was lower (P less than 0.05) in control sheep (0.12) than in PEG sheep (0.21; P less than 0.05). Rumen ammonia concentrations were lower (P less than 0.001) in control sheep than in PEG sheep. The proportion of neutral-detergent fibre (NDF) digested in the rumen was similar for both groups (0.48 (SE 0.012)) but less energy was digested in the rumen of the control (0.42) than of the PEG sheep (0.47; P less than 0.05). The flux of essential amino acids (EAA) through the abomasum of control sheep was 50% greater than that in PEG sheep; flux of non-essential amino acids (NEAA) was 14% higher in control than in PEG sheep. Apparent digestibility of EAA in the small intestine was similar for both treatments (0.67), but NEAA were less well digested in the control (0.55) than in the PEG sheep (0.69). The presence of tannins in the control group increased net apparent absorption of threonine (57%), valine (89%), isoleucine (94%), leucine (30%), tyrosine (41%), phenylalanine (93%), histidine (90%) and lysine (59%), and reduced NEAA absorption by 10%, compared with PEG sheep.

407 citations

Journal ArticleDOI
TL;DR: The data suggest that the increased outflow of water was achieved by increasing the net flow of water across the mucosa into the reticulo-rumen, rather than by increasing salivation.
Abstract: Chaffed lucerne hay of 64% apparent organic matter (OM) digestibility was fed to wether sheep under four feeding regimens: two levels of dry matter (D.M.) intake (700 (L) and 1050 (H) g/day) and within each level two feeding frequencies (once a day (daily) and once an hour (hourly)). Three separate groups of sheep were used concurrently: a slaughter group was used to obtain feeding behaviour data and to measure pool sizes and obtain samples from the reticulo-rumen; a digestion group, in which each sheep was prepared with a rumen and a duodenal cannula, was used to measure duodenal digesta flow, rumen microbial growth and reticulo-rumen motility; a balance group was used to measure digestibility and nutrient balances.High D.M. intake increased reticulo-rumen pool sizes and flow rates but it did not affect apparent digestibilities or the proportions of OM, fibre, cellulose, hemicellulose, lipid and nitrogen digested in the stomach and intestines. Increased feeding frequency had a major effect on reticulo-rumen pool sizes but did not affect apparent digestibilities or partition of digestion of non-nitrogenous constituents. Daily feeding resulted in increased total-N flow to the duodenum; however, N retention was significantly greater with frequent feeding. It is suggested that this was due to a more efficient tissue utilization of N.The kinetics of digesta flow within the reticulo-rumen, expressed as fractional flow rates, were studied with data from sheep fed hourly. The fractional inflow, outflow and disappearance rates for OM, fibre, cellulose and hemicellulose did not change with an increase in intake because of an equivalent increase in reticulo-rumen volume. Increasing D.M. intake by 50% resulted in a 24% increase in water intake, a 19% increase in reticulo-rumen water volume, and a 49% increase in water outflow rate. The data suggest that the increased outflow of water was achieved by increasing the net flow of water across the mucosa into the reticulo-rumen, rather than by increasing salivation.There was no difference between treatments in the frequency of reticulo-rumen contractions. It was calculated that for each A sequence contraction, OM flow was 0·26 and 0·37 g and water flow was 4·38 and 0·36 g on L and H intakes respectively. A 50% increase in intake resulted in a 42% increase in OM passage per A sequence contraction. This increased passage with intake was not accompanied by an increase in reticulorumen contraction frequency.

92 citations

Journal ArticleDOI
TL;DR: Analyses of particle composition showed a rapid loss of non cell wall constituents after feeding and an increasing contribution of rumination toward particle size reduction in reticulo-rumen pool size.
Abstract: Chaffed lucerne hay was fed to wether sheep at two feeding frequencies (once a day (daily) and once an hour (hourly)) and at two levels of dry matter (D.M.) intake (700 (L) and 1020 (H) g/day). Sheep fed daily were slaughtered either prior to eating, immediately after eating ceased or 10 h after eating ceased to compare rumen, reticulum, omasum and abomasum pool sizes and particle size distributions within pools. Effects of level of intake, feeding frequency and time after feeding were confined mainly to the rumen which contained 77–91% of stomach D.M. Once-daily feeding resulted in a 2·6 fold variation in rumen D.M. pool size. Sheep fed hourly had a relatively small rumen and comparatively large reticulum D.M. pool. Diurnal changes in reticulo-rumen particle size pools are discussed in relation to the effectiveness of chewing. Particle size distribution in digesta was estimated by wet sieving. On average the proportion of D.M. retained on a sieve 1 mm or larger comprised 35, 28, 4 and 4% of D.M. in the rumen, reticulum, omasum and abomasum, respectively, D.M. passing a 0·25 mm sieve comprised 40, 46, 57 and 61% of D.M. in the respective organs. The reticulum usually contained significantly less D.M. retained on a 4 mm sieve than the rumen, and reticulum D.M. percentage was usually 3–5 units lower than rumen D.M. percentage. Reticulum digesta composition is discussed in relation to the efflux of particulate D.M. to the omasum. Chemical composition of rumen particulate D.M. retained on sieves > 0·25 mm was comparatively unaffected by intake level and feeding frequency. Analyses of particle composition showed a rapid loss of non cell wall constituents after feeding and an increasing contribution of rumination toward particle size reduction.

47 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Trees and shrub foliage and agro-industrial by-products are of importance in animal production because they do not compete with human food and can provide significant protein supplements, especially in the dry season; and with proper management they could become invaluable sources of protein for strategic supplementation.

1,034 citations

Journal ArticleDOI
TL;DR: It was concluded that moderate concentrations of CT can be used to increase the efficiency of protein digestion and to improve animal health under grazing, producing more sustainable grazing systems.

964 citations

Journal ArticleDOI
TL;DR: Research on manipulating the content and type of PA in forage legumes is justified because they are associated with non-bloating legumes, lower soluble non-protein nitrogen in silage, and improved efficiency of protein utilization.
Abstract: Proanthocyanidins (PA) (condensed tannins) and hydrolyzable tannins (HT) are the two major classes of tannins. Proanthocyanidins are flavonoid polymers. Hydrolyzable tannins are polymers of gallic or ellagic acid esterified to a core molecule, commonly glucose or a polyphenol such as catechin. Proanthocyanidins are the most common type of tannin found in forage legumes. Problems in the analysis of tannins are that sample processing and drying decrease extraction and reactivity, suitable standards are unavailable, and quantitative analytical methods are poorly correlated with enzyme inhibition, protein precipitation, and nutritional effects. Hydrolyzable tannins are potentially toxic to ruminants. Pyrogallol, a hepatotoxin and nephrotoxin, is a product of HT degradation by ruminal microbes. Proanthocyanidins are considered to be non-toxic because they are not absorbed, but they are associated with lesions of the gut mucosa. Research on tannins in forage legumes has determined their effects on protein digestion and metabolism but more research on tannin structure in relation to digestion of specific proteins is needed. The widely accepted explanation for positive effects of PA on protein digestion and metabolism is that PA-protein complexes escape ruminal degradation and the protein is available in the lower tract. This proposed mechanism may be incorrect because PA also complex carbohydrates, endogenous proteins, and microbial products and the degradability of PA-protein complexes by ruminal microbes has not been adequately studied. Several alternative hypotheses (to escape protein) that explain the effect of PA on protein digestion and metabolism in ruminants are also consistent with experimental results on forage legumes. These include increased microbial protein synthesis, increased use of endogenous nitrogen in the rumen, and increased secretion of salivary glycoproteins. Research on manipulating the content and type of PA in forage legumes is justified because they are associated with non-bloating legumes, lower soluble non-protein nitrogen in silage, and improved efficiency of protein utilization. Research on the biosynthesis, molecular genetics, and cell biology of PA in forage legumes needs to be integrated with research on toxicology and nutrition.

838 citations

Journal ArticleDOI
TL;DR: The elucidation of tannin structure–activity relationships presents exciting opportunities for future feeding strategies that will benefit ruminants and the environment within the contexts of extensive, semi-intensive and some intensive agricultural systems.
Abstract: This paper examines the nutritional and veterinary effects of tannins on ruminants and makes some comparisons with non-ruminants. Tannin chemistry per se is not covered and readers are referred to several excellent reviews instead: (a) Okuda T et al. Heterocycles 30:1195-1218 (1990); (b) Ferreira D and Slade D. Nat Prod Rep 19:517-541 (2002); (c) Yoshida T et al. In Studies in Natural Product Chemistry. Elsevier Science, Amsterdam, pp. 395-453 (2000); (d) Khanbabaee K and van Ree T. Nat Prod Rep 18:641-649 (2001); (e) Okuda et al. Phytochemistvy 55:513-529 (2000). The effects of tannins on rumen micro-organisms are also not reviewed, as these have been addressed by others: (a) McSweeney CS et al. Anim Feed Sci Technol 91:83-93 (2001); (b) Smith AH and Mackie RI. Appl Environ Microbiol 70:1104-1115 (2004). This paper deals first with the nutritional effects of tannins in animal feeds, their qualitative and quantitative diversity, and the implications of tannin-protein complexation. It then summarises the known physiological and harmful effects and discusses the equivocal evidence of the bioavailability of tannins. Issues concerning tannin metabolism and systemic effects are also considered. Opportunities are presented on how to treat feeds with high tannin contents, and some lesser-known but successful feeding strategies are highlighted. Recent research has explored the use of tannins for preventing animal deaths from bloat, for reducing intestinal parasites and for lowering gaseous ammonia and methane emissions. Finally, several tannin assays and a hypothesis are discussed that merit further investigation in order to assess their suitability for predicting animal responses. The aim is to provoke discussion and spur readers into new approaches. An attempt is made to synthesise the emerging information for relating tannin structures with their activities. Although many plants with high levels of tannins produce negative effects and require treatments, others are very useful animal feeds. Our ability to predict whether tannin-containing feeds confer positive or negative effects will depend on interdisciplinary research between animal nutritionists and plant chemists. The elucidation of tannin structure-activity relationships presents exciting opportunities for future feeding strategies that will benefit ruminants and the environment within the contexts of extensive, semi-intensive and some intensive agricultural systems. (c) 2006 Society of Chemical Industry

802 citations

Journal ArticleDOI
TL;DR: In this article, a procedure was developed for extraction of free condensed tannins (CT) using a mixture of acetone/water/diethyl ether (4.7:2.3), followed by extraction of protein-bound and fibre-bound CT using boiling sodium dodecyl sulphate containing 2-mercaptoethanol (SDS).
Abstract: A procedure was developed for extraction of ‘free’ condensed tannins (CT) using a mixture of acetone/water/diethyl ether (4.7:2.0:3.3), followed by extraction of protein-bound and fibre-bound CT using boiling sodium dodecyl sulphate containing 2-mercaptoethanol (SDS). CT concentrations in all three fractions were determined by a modified butanol-HCI procedure. Separate standard curves using purified CT in water or SDS solution were utilised for analysis of extractable CT (water standards) and protein-bound and fibre-bound CT (SDS standards). The method accurately predicted the concentration of CT added to forage extracts. CT extractable in acetone/water/diethyl ether comprised, on average. 68% of total CT in a range of freeze dried forage legume samples, with most of the remainder being bound to protein. When total CT concentration was low (0.6-3.0% DM), a lower proportion was extractable (33-35%). In protein concentrate meals containing CT, the extractable, protein-bound and fibre-bound components comprised 15, 60 and 25% respectively of total CT. Total CT concentration in the forages Lotus corniculatus and Coronilla varia was considered appropriate for ruminant nutrition (2.1 and 3.0% DM). whilst CT concentration in the forage of Dorycnium spp (13–19% DM) was more suitable for soil conservation purposes. The substantial CT concentration in cottonseed meal (1.6% DM) may be involved in the high resistance of proteins in this product to ruminal degradation. CT concentration was indistinguishable from zero in perennial ryegrass forage, in barley and triticale grains and in soya bean meal (0.1% DM).

776 citations