scispace - formally typeset
Search or ask a question
Author

A. K. M. F. Hussain

Other affiliations: Houston Methodist Hospital
Bio: A. K. M. F. Hussain is an academic researcher from University of Houston. The author has contributed to research in topics: Turbulence & Reynolds number. The author has an hindex of 17, co-authored 23 publications receiving 2193 citations. Previous affiliations of A. K. M. F. Hussain include Houston Methodist Hospital.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the conditions most favorable to vortex parting were determined as a function of the excitation Strouhal number, the Reynolds number, and the initial shear-layer state.
Abstract: Hot-wire and flow visualization studies were performed in three air jets subjected to pure-tone excitation The instability, vortex roll-up, and transition to the controlled excitation were investigated The conditions most favorable to vortex parting were determined as a function of the excitation Strouhal number, the Reynolds number, and the initial shear-layer state; it was shown that the rolled-up vortex rings undergo pairing under 'the shear layer mode', and the 'jet-column mode' when the Strouhal numbers based on the initial shear-layer momentum thickness are 0012 and 085, respectively Coherent ring-like vortical structures could be educed to the end of the potential core; however, the paired vortex becomes weaker with increasing downstream distances The transverse transport of 'u' momentum by the coherent structures was much larger during the pairing process than in regions where a single vortex is studied

469 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of perturbation on axisymmetric free jets under controlled perturbations at the jet preferred mode is explored, and it is found that the effect is to increase jet spread and mean velocity decay, as well as to increase the peak values of the time-average fluctuation intensities and Reynolds stress in the axisymmetric mixing layer.
Abstract: Detailed distributions of different time-average and phase-average flow properties for an axisymmetric free jet under controlled perturbation at the jet preferred mode are explored. The data are compared with the corresponding unexcited jet data. It is found that the effect of the perturbation is to increase jet spread and mean velocity decay, as well as to increase the peak values of the time-average fluctuation intensities and Reynolds stress in the axisymmetric mixing layer.

281 citations

Journal ArticleDOI
TL;DR: In this paper, Turulence suppression in the near field of a free shear flow under controlled excitation is investigated in four circular jets, a plane jet, and a plane mixing layer, and the most pronounced suppression occurs when the shear layer is excited at a frequency 40% higher than the natural roll-up frequency.
Abstract: Turbulence suppression in the near field of a free shear flow under controlled excitation is investigated in four circular jets, a plane jet, and a plane mixing layer The suppression is a consequence of an excitation-induced modification of the shear layer structure and occurs at the excitation frequency corresponding to the maximally unstable disturbance frequency of the initial free shear layer The most pronounced suppression occurs when the shear layer is excited at a frequency 40% higher than the natural roll-up frequency Excitation at a Strouhal number of about 0017 produces a rapid roll-up and early breakdown of the shear layer, and thus inhibits the formation of the energetic large-scale vortices which otherwise survive farther downstream, grow to larger sizes, and undergo successive pairings in the corresponding unexcited flow

276 citations

Journal ArticleDOI
TL;DR: In this paper, the coherent structure dynamics in the near field of a circular jet has been experimentally explored by inducing stable vortex pairing through controlled excitation and applying phase-averaging techniques.
Abstract: The coherent structure dynamics in the near field of a circular jet has been experimentally explored by inducing ‘stable’ vortex pairing through controlled excitation (see Zaman & Hussain 1980) and applying phase-averaging techniques. Hot-wire measurements were made in a 7·62 cm air jet with laminar exit boundary layer at the Reynolds number ReD = 3·2 × 104, excited at the Strouhal number StD = 0·85. At a particular phase during the pairing process, spatial distributions of the phase-average longitudinal and lateral velocity perturbations (〈u)〉, 〈v〉), vorticity, streamlines, the coherent and background Reynolds stresses and turbulence intensities have been educed. These data have been obtained for four different locations occupied by the vortices at the same phase (preceding, during, and following the pairing event), in the region 0 < x/D < 5. Spatial distributions of these measures at four successive phases during the pairing process are also educed in an attempt to further understand the vortex-pairing dynamics. The flow physics is discussed on the basis of measurements over the physical extent of the vortical structures, phase-locked to specific phases of the pairing event and thus do not involve use of the Taylor hypothesis.The computed pseudostream functions at particular phases are compared with the corresponding streamlines drawn by the method of isoclines. Transition of the vortices is examined on the basis of vorticity diffusion, the superimposed random fluctuation field intensities and Reynolds stress and phase-locked circumferential correlation measurements. The peak vorticity drops rapidly owing to transition and interaction of the vortices during pairing but, farther downstream, the decay can be attributed to destruction of the coherent vorticity by the background turbulence Reynolds stress, especially at the locations of the latter's ‘saddle points’. Controlled excitation enhances the initial circumferential coherence of the vortical structures, but is ineffective in delaying turbulent breakdown near the end of the potential core; the breakdown appears to occur through evolution of the circumferential lobe structures. The coherent structure Reynolds stress is found to be much larger than the background turbulence Reynolds stress for 0 < x/D [lsim ] 3, but these two are comparable near the end of the jet potential core. The zone average of the coherent structure Reynolds stress over the cross-section of the merging vortex pair is much larger than that over a single vortical structure either before or after the completion of pairing. During the pairing process, such average correlations are found to be the largest at an early phase of the process while entrainment, turbulent breakdown as well as rapid diffusion of vorticity occur at a later phase. The regions of alternate positive and negative coherent Reynolds stresses associated with the structures and their interactions help explain ‘negative production’.

204 citations

Journal ArticleDOI
TL;DR: The applicability of the Taylor hypothesis to large-scale coherent structures in turbulent shear flows has been evaluated by comparing the actual spatial distributions of the structure properties with those deduced through the use of the hypothesis.
Abstract: The applicability of the Taylor hypothesis to large-scale coherent structures in turbulent shear flows has been evaluated by comparing the actual spatial distributions of the structure properties with those deduced through the use of the hypothesis. This study has been carried out in the near field of a 7[sdot ]62 cm circular air jet at a jet Reynolds number of 3[sdot ]2 x 104, where the coherent structures and their interactions have been organized through controlled excitation. Actual distributions of the structure properties have been obtained through phase-average hot-wire data, the measurements having been repeated at different spatial points over the extents of the structure crosssections at a fixed phase. The corresponding ‘spatial’ distributions of these properties obtained (by using the Taylor hypothesis) from the temporal data at appropriate phases and locations, show that the hypothesis works quite well for an isolated coherent structure if a constant convection velocity, equal to the structure centre velocity, is used in the hypothesis everywhere across the shear flow. The popular use of the local time-average or even the instantaneous streamwise velocity produces unacceptably large distortions. When structure interactions like pairing are involved, no convection velocity can be found with which the hypothesis works. Distributions of the terms in the Navier–Stokes equation contributing to the phase-average vorticity, but neglected by the hypothesis, have been quantitatively determined. These show that the terms associated with the background turbulence field, but not those associated with the coherent motion field, can be neglected. In particular, the pressure term due to the coherent motion field is large and cannot be neglected.

189 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors propose a definition of vortex in an incompressible flow in terms of the eigenvalues of the symmetric tensor, which captures the pressure minimum in a plane perpendicular to the vortex axis at high Reynolds numbers, and also accurately defines vortex cores at low Reynolds numbers.
Abstract: Considerable confusion surrounds the longstanding question of what constitutes a vortex, especially in a turbulent flow. This question, frequently misunderstood as academic, has recently acquired particular significance since coherent structures (CS) in turbulent flows are now commonly regarded as vortices. An objective definition of a vortex should permit the use of vortex dynamics concepts to educe CS, to explain formation and evolutionary dynamics of CS, to explore the role of CS in turbulence phenomena, and to develop viable turbulence models and control strategies for turbulence phenomena. We propose a definition of a vortex in an incompressible flow in terms of the eigenvalues of the symmetric tensor ${\bm {\cal S}}^2 + {\bm \Omega}^2$ are respectively the symmetric and antisymmetric parts of the velocity gradient tensor ${\bm \Delta}{\bm u}$. This definition captures the pressure minimum in a plane perpendicular to the vortex axis at high Reynolds numbers, and also accurately defines vortex cores at low Reynolds numbers, unlike a pressure-minimum criterion. We compare our definition with prior schemes/definitions using exact and numerical solutions of the Euler and Navier–Stokes equations for a variety of laminar and turbulent flows. In contrast to definitions based on the positive second invariant of ${\bm \Delta}{\bm u}$ or the complex eigenvalues of ${\bm \Delta}{\bm u}$, our definition accurately identifies the vortex core in flows where the vortex geometry is intuitively clear.

5,837 citations

Journal ArticleDOI
TL;DR: In this article, the authors survey the existing work on intermittency, refined similarity hypotheses, anomalous scaling exponents, derivative statistics, and intermittency models, and the structure and kinematics of small-scale structure.
Abstract: Small-scale turbulence has been an area of especially active research in the recent past, and several useful research directions have been pursued. Here, we selectively review this work. The emphasis is on scaling phenomenology and kinematics of small-scale structure. After providing a brief introduction to the classical notions of universality due to Kolmogorov and others, we survey the existing work on intermittency, refined similarity hypotheses, anomalous scaling exponents, derivative statistics, intermittency models, and the structure and kinematics of small-scale structure—the latter aspect coming largely from the direct numerical simulation of homogeneous turbulence in a periodic box.

1,183 citations

Journal ArticleDOI
TL;DR: In this article, a general scheme for educing coherent structures in any transitional or fully turbulent flow is presented, based on smoothed vorticity maps in convenient flow planes, which recognizes patterns of the same mode and parameter size, and then phase-aligns and ensembles them to obtain coherent structure measures.
Abstract: This is a personal statement on the present state of understanding of coherent structures, in particular their spatial details and dynamical significance. The characteristic measures of coherent structures are discussed, emphasizing coherent vorticity as the crucial property. We present here a general scheme for educing structures in any transitional or fully turbulent flow. From smoothed vorticity maps in convenient flow planes, this scheme recognizes patterns of the same mode and parameter size, and then phase-aligns and ensemble-averages them to obtain coherent structure measures. The departure of individual realizations from the ensemble average denotes incoherent turbulence. This robust scheme has been used to educe structures from velocity data using a rake of hot wires as well as direct numerical simulations and can educe structures using newer measurement techniques such as digital image processing. Our recent studies of coherent structures in several free shear flows are briefly reviewed. Detailed data in circular and elliptic jets, mixing layers, and a plane wake reveal that incoherent turbulence is produced at the ‘saddles’ and then advected to the ‘centres’ of the structures. The mechanism of production of turbulence in shear layers is the stretching of longitudinal vortices or ‘ribs’ which connect the predominantly spanwise ‘rolls’; the ribs induce spanwise contortions of rolls and cause mixing and dissipation, mostly at points where they connect with rolls. We also briefly discuss the role of coherent structures in aerodynamic noise generation and argue that the structure breakdown process, rather than vortex pairing, is the dominant mechanism of noise generation. The ‘cut-and-connect’ interaction of coherent structures is proposed as a specific mechanism of aerodynamic noise generation, and a simple analytical model of it shows that it can provide acceptable predictions of jet noise. The coherent-structures approach to turbulence, apart from explaining flow physics, has also enabled turbulence management via control of structure evolution and interactions. We also discuss some new ideas under investigation: in particular, helicity as a characteristic property of coherent structures.

1,117 citations

Journal ArticleDOI
TL;DR: The intent of this document is to provide an introduction to modal analysis that is accessible to the larger fluid dynamics community and presents a brief overview of several of the well-established techniques.
Abstract: Simple aerodynamic configurations under even modest conditions can exhibit complex flows with a wide range of temporal and spatial features. It has become common practice in the analysis of these flows to look for and extract physically important features, or modes, as a first step in the analysis. This step typically starts with a modal decomposition of an experimental or numerical dataset of the flowfield, or of an operator relevant to the system. We describe herein some of the dominant techniques for accomplishing these modal decompositions and analyses that have seen a surge of activity in recent decades [1–8]. For a nonexpert, keeping track of recent developments can be daunting, and the intent of this document is to provide an introduction to modal analysis that is accessible to the larger fluid dynamics community. In particular, we present a brief overview of several of the well-established techniques and clearly lay the framework of these methods using familiar linear algebra. The modal analysis techniques covered in this paper include the proper orthogonal decomposition (POD), balanced proper orthogonal decomposition (balanced POD), dynamic mode decomposition (DMD), Koopman analysis, global linear stability analysis, and resolvent analysis.

1,110 citations

BookDOI
27 Sep 2001
TL;DR: In this paper, the authors present a detailed overview of the history of the field of flow simulation for MEMS and discuss the current state-of-the-art in this field.
Abstract: Part I: Background and Fundamentals Introduction, Mohamed Gad-el-Hak, University of Notre Dame Scaling of Micromechanical Devices, William Trimmer, Standard MEMS, Inc., and Robert H. Stroud, Aerospace Corporation Mechanical Properties of MEMS Materials, William N. Sharpe, Jr., Johns Hopkins University Flow Physics, Mohamed Gad-el-Hak, University of Notre Dame Integrated Simulation for MEMS: Coupling Flow-Structure-Thermal-Electrical Domains, Robert M. Kirby and George Em Karniadakis, Brown University, and Oleg Mikulchenko and Kartikeya Mayaram, Oregon State University Liquid Flows in Microchannels, Kendra V. Sharp and Ronald J. Adrian, University of Illinois at Urbana-Champaign, Juan G. Santiago and Joshua I. Molho, Stanford University Burnett Simulations of Flows in Microdevices, Ramesh K. Agarwal and Keon-Young Yun, Wichita State University Molecular-Based Microfluidic Simulation Models, Ali Beskok, Texas A&M University Lubrication in MEMS, Kenneth S. Breuer, Brown University Physics of Thin Liquid Films, Alexander Oron, Technion, Israel Bubble/Drop Transport in Microchannels, Hsueh-Chia Chang, University of Notre Dame Fundamentals of Control Theory, Bill Goodwine, University of Notre Dame Model-Based Flow Control for Distributed Architectures, Thomas R. Bewley, University of California, San Diego Soft Computing in Control, Mihir Sen and Bill Goodwine, University of Notre Dame Part II: Design and Fabrication Materials for Microelectromechanical Systems Christian A. Zorman and Mehran Mehregany, Case Western Reserve University MEMS Fabrication, Marc J. Madou, Nanogen, Inc. LIGA and Other Replication Techniques, Marc J. Madou, Nanogen, Inc. X-Ray-Based Fabrication, Todd Christenson, Sandia National Laboratories Electrochemical Fabrication (EFAB), Adam L. Cohen, MEMGen Corporation Fabrication and Characterization of Single-Crystal Silicon Carbide MEMS, Robert S. Okojie, NASA Glenn Research Center Deep Reactive Ion Etching for Bulk Micromachining of Silicon Carbide, Glenn M. Beheim, NASA Glenn Research Center Microfabricated Chemical Sensors for Aerospace Applications, Gary W. Hunter, NASA Glenn Research Center, Chung-Chiun Liu, Case Western Reserve University, and Darby B. Makel, Makel Engineering, Inc. Packaging of Harsh-Environment MEMS Devices, Liang-Yu Chen and Jih-Fen Lei, NASA Glenn Research Center Part III: Applications of MEMS Inertial Sensors, Paul L. Bergstrom, Michigan Technological University, and Gary G. Li, OMM, Inc. Micromachined Pressure Sensors, Jae-Sung Park, Chester Wilson, and Yogesh B. Gianchandani, University of Wisconsin-Madison Sensors and Actuators for Turbulent Flows. Lennart Loefdahl, Chalmers University of Technology, and Mohamed Gad-el-Hak, University of Notre Dame Surface-Micromachined Mechanisms, Andrew D. Oliver and David W. Plummer, Sandia National Laboratories Microrobotics Thorbjoern Ebefors and Goeran Stemme, Royal Institute of Technology, Sweden Microscale Vacuum Pumps, E. Phillip Muntz, University of Southern California, and Stephen E. Vargo, SiWave, Inc. Microdroplet Generators. Fan-Gang Tseng, National Tsing Hua University, Taiwan Micro Heat Pipes and Micro Heat Spreaders, G. P. "Bud" Peterson, Rensselaer Polytechnic Institute Microchannel Heat Sinks, Yitshak Zohar, Hong Kong University of Science and Technology Flow Control, Mohamed Gad-el-Hak, University of Notre Dame) Part IV: The Future Reactive Control for Skin-Friction Reduction, Haecheon Choi, Seoul National University Towards MEMS Autonomous Control of Free-Shear Flows, Ahmed Naguib, Michigan State University Fabrication Technologies for Nanoelectromechanical Systems, Gary H. Bernstein, Holly V. Goodson, and Gregory L. Snider, University of Notre Dame Index

951 citations