scispace - formally typeset
Search or ask a question
Author

A. K. Maulloo

Bio: A. K. Maulloo is an academic researcher from University of Cambridge. The author has contributed to research in topics: Fairness measure & Shadow price. The author has an hindex of 1, co-authored 1 publications receiving 5435 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This paper analyses the stability and fairness of two classes of rate control algorithm for communication networks, which provide natural generalisations to large-scale networks of simple additive increase/multiplicative decrease schemes, and are shown to be stable about a system optimum characterised by a proportional fairness criterion.
Abstract: This paper analyses the stability and fairness of two classes of rate control algorithm for communication networks. The algorithms provide natural generalisations to large-scale networks of simple additive increase/multiplicative decrease schemes, and are shown to be stable about a system optimum characterised by a proportional fairness criterion. Stability is established by showing that, with an appropriate formulation of the overall optimisation problem, the network's implicit objective function provides a Lyapunov function for the dynamical system defined by the rate control algorithm. The network's optimisation problem may be cast in primal or dual form: this leads naturally to two classes of algorithm, which may be interpreted in terms of either congestion indication feedback signals or explicit rates based on shadow prices. Both classes of algorithm may be generalised to include routing control, and provide natural implementations of proportionally fair pricing.

5,566 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The authors' convergence rate results explicitly characterize the tradeoff between a desired accuracy of the generated approximate optimal solutions and the number of iterations needed to achieve the accuracy.
Abstract: We study a distributed computation model for optimizing a sum of convex objective functions corresponding to multiple agents. For solving this (not necessarily smooth) optimization problem, we consider a subgradient method that is distributed among the agents. The method involves every agent minimizing his/her own objective function while exchanging information locally with other agents in the network over a time-varying topology. We provide convergence results and convergence rate estimates for the subgradient method. Our convergence rate results explicitly characterize the tradeoff between a desired accuracy of the generated approximate optimal solutions and the number of iterations needed to achieve the accuracy.

3,238 citations

Journal ArticleDOI
12 May 2011-Nature
TL;DR: In this article, the authors developed analytical tools to study the controllability of an arbitrary complex directed network, identifying the set of driver nodes with time-dependent control that can guide the system's entire dynamics.
Abstract: The ultimate proof of our understanding of natural or technological systems is reflected in our ability to control them. Although control theory offers mathematical tools for steering engineered and natural systems towards a desired state, a framework to control complex self-organized systems is lacking. Here we develop analytical tools to study the controllability of an arbitrary complex directed network, identifying the set of driver nodes with time-dependent control that can guide the system's entire dynamics. We apply these tools to several real networks, finding that the number of driver nodes is determined mainly by the network's degree distribution. We show that sparse inhomogeneous networks, which emerge in many real complex systems, are the most difficult to control, but that dense and homogeneous networks can be controlled using a few driver nodes. Counterintuitively, we find that in both model and real systems the driver nodes tend to avoid the high-degree nodes.

2,889 citations

Journal ArticleDOI
TL;DR: The existence of fair end-to-end window-based congestion control protocols for packet-switched networks with first come-first served routers is demonstrated using a Lyapunov function.
Abstract: In this paper, we demonstrate the existence of fair end-to-end window-based congestion control protocols for packet-switched networks with first come-first served routers. Our definition of fairness generalizes proportional fairness and includes arbitrarily close approximations of max-min fairness. The protocols use only information that is available to end hosts and are designed to converge reasonably fast. Our study is based on a multiclass fluid model of the network. The convergence of the protocols is proved using a Lyapunov function. The technical challenge is in the practical implementation of the protocols.

2,161 citations

Journal ArticleDOI
TL;DR: An optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates to solve the dual problem using a gradient projection algorithm.
Abstract: We propose an optimization approach to flow control where the objective is to maximize the aggregate source utility over their transmission rates. We view network links and sources as processors of a distributed computation system to solve the dual problem using a gradient projection algorithm. In this system, sources select transmission rates that maximize their own benefits, utility minus bandwidth cost, and network links adjust bandwidth prices to coordinate the sources' decisions. We allow feedback delays to be different, substantial, and time varying, and links and sources to update at different times and with different frequencies. We provide asynchronous distributed algorithms and prove their convergence in a static environment. We present measurements obtained from a preliminary prototype to illustrate the convergence of the algorithm in a slowly time-varying environment. We discuss its fairness property.

2,101 citations

Journal ArticleDOI
TL;DR: This tutorial paper first reviews the basics of convexity, Lagrange duality, distributed subgradient method, Jacobi and Gauss-Seidel iterations, and implication of different time scales of variable updates, and introduces primal, dual, indirect, partial, and hierarchical decompositions, focusing on network utility maximization problem formulations.
Abstract: A systematic understanding of the decomposability structures in network utility maximization is key to both resource allocation and functionality allocation. It helps us obtain the most appropriate distributed algorithm for a given network resource allocation problem, and quantifies the comparison across architectural alternatives of modularized network design. Decomposition theory naturally provides the mathematical language to build an analytic foundation for the design of modularized and distributed control of networks. In this tutorial paper, we first review the basics of convexity, Lagrange duality, distributed subgradient method, Jacobi and Gauss-Seidel iterations, and implication of different time scales of variable updates. Then, we introduce primal, dual, indirect, partial, and hierarchical decompositions, focusing on network utility maximization problem formulations and the meanings of primal and dual decompositions in terms of network architectures. Finally, we present recent examples on: systematic search for alternative decompositions; decoupling techniques for coupled objective functions; and decoupling techniques for coupled constraint sets that are not readily decomposable

1,725 citations