scispace - formally typeset
Search or ask a question
Author

A. Keimpema

Bio: A. Keimpema is an academic researcher from Joint Institute for VLBI in Europe. The author has contributed to research in topics: Very-long-baseline interferometry & Fast radio burst. The author has an hindex of 11, co-authored 24 publications receiving 1593 citations. Previous affiliations of A. Keimpema include New Jersey Institute of Technology.

Papers
More filters
Journal ArticleDOI
05 Jan 2017-Nature
TL;DR: The authors' observations are inconsistent with the fast radio burst having a Galactic origin or its source being located within a prominent star-forming galaxy, and the source appears to be co-located with a low-luminosity active galactic nucleus or a previously unknown type of extragalactic source.
Abstract: Subarcsecond localization of the repeating fast radio burst FRB 121102 shows that its source is co-located with a faint galaxy with a low-luminosity active galactic nucleus, or a previously unknown type of extragalactic source. Shami Chatterjee et al. report the subarcsecond localization of the Arecibo-discovered fast radio burst FRB 121102, the only known repeating burst source, using high-time-resolution radio interferometric observations that directly image the bursts. FRBs are radio flashes of unknown physical nature with durations of milliseconds. Previous observations have lacked the resolution to uniquely identify a host or multi-wavelength counterpart. The localization of FRB 121102 reveals a persistent radio and optical source that is coincident with the bursts to within 100 milliarcseconds. The enigmatic persistent source could be a neutron star within its nebula in a distant host galaxy, a low-luminosity active galactic nucleus, or a previously unknown type of extragalactic source. Fast radio bursts1,2 are astronomical radio flashes of unknown physical nature with durations of milliseconds. Their dispersive arrival times suggest an extragalactic origin and imply radio luminosities that are orders of magnitude larger than those of all known short-duration radio transients3. So far all fast radio bursts have been detected with large single-dish telescopes with arcminute localizations, and attempts to identify their counterparts (source or host galaxy) have relied on the contemporaneous variability of field sources4 or the presence of peculiar field stars5 or galaxies4. These attempts have not resulted in an unambiguous association6,7 with a host or multi-wavelength counterpart. Here we report the subarcsecond localization of the fast radio burst FRB 121102, the only known repeating burst source8,9,10,11, using high-time-resolution radio interferometric observations that directly image the bursts. Our precise localization reveals that FRB 121102 originates within 100 milliarcseconds of a faint 180-microJansky persistent radio source with a continuum spectrum that is consistent with non-thermal emission, and a faint (twenty-fifth magnitude) optical counterpart. The flux density of the persistent radio source varies by around ten per cent on day timescales, and very long baseline radio interferometry yields an angular size of less than 1.7 milliarcseconds. Our observations are inconsistent with the fast radio burst having a Galactic origin or its source being located within a prominent star-forming galaxy. Instead, the source appears to be co-located with a low-luminosity active galactic nucleus or a previously unknown type of extragalactic source. Localization and identification of a host or counterpart has been essential to understanding the origins and physics of other kinds of transient events, including gamma-ray bursts12,13 and tidal disruption events14. However, if other fast radio bursts have similarly faint radio and optical counterparts, our findings imply that direct subarcsecond localizations may be the only way to provide reliable associations.

772 citations

Journal ArticleDOI
09 Jan 2020-Nature
TL;DR: Only one repeating fast radio burst has been localized, to an irregular dwarf galaxy; now another is found to come from a star-forming region of a nearby spiral galaxy, suggesting that repeating FRBs may have a wide range of luminosities, and originate from diverse host galaxies and local environments.
Abstract: Fast radio bursts (FRBs) are brief, bright, extragalactic radio flashes1,2. Their physical origin remains unknown, but dozens of possible models have been postulated3. Some FRB sources exhibit repeat bursts4–7. Although over a hundred FRB sources have been discovered8, only four have been localized and associated with a host galaxy9–12, and just one of these four is known to emit repeating FRBs9. The properties of the host galaxies, and the local environments of FRBs, could provide important clues about their physical origins. The first known repeating FRB, however, was localized to a low-metallicity, irregular dwarf galaxy, and the apparently non-repeating sources were localized to higher-metallicity, massive elliptical or star-forming galaxies, suggesting that perhaps the repeating and apparently non-repeating sources could have distinct physical origins. Here we report the precise localization of a second repeating FRB source6, FRB 180916.J0158+65, to a star-forming region in a nearby (redshift 0.0337 ± 0.0002) massive spiral galaxy, whose properties and proximity distinguish it from all known hosts. The lack of both a comparably luminous persistent radio counterpart and a high Faraday rotation measure6 further distinguish the local environment of FRB 180916.J0158+65 from that of the single previously localized repeating FRB source, FRB 121102. This suggests that repeating FRBs may have a wide range of luminosities, and originate from diverse host galaxies and local environments. Only one repeating fast radio burst has been localized, to an irregular dwarf galaxy; now another is found to come from a star-forming region of a nearby spiral galaxy.

347 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported the precise localisation of a second repeating fast radio bursts (FRB 180916.J0158+65) to a star-forming region in a nearby (redshift $z = 0.0337 \pm 0.0002$) massive spiral galaxy, whose properties and proximity distinguish it from all known hosts.
Abstract: Fast radio bursts (FRBs) are brief, bright, extragalactic radio flashes. Their physical origin remains unknown, but dozens of possible models have been postulated. Some FRB sources exhibit repeat bursts. Though over a hundred FRB sources have been discovered to date, only four have been localised and associated with a host galaxy, with just one of the four known to repeat. The properties of the host galaxies, and the local environments of FRBs, provide important clues about their physical origins. However, the first known repeating FRB has been localised to a low-metallicity, irregular dwarf galaxy, and the apparently non-repeating sources to higher-metallicity, massive elliptical or star-forming galaxies, suggesting that perhaps the repeating and apparently non-repeating sources could have distinct physical origins. Here we report the precise localisation of a second repeating FRB source, FRB 180916.J0158+65, to a star-forming region in a nearby (redshift $z = 0.0337 \pm 0.0002$) massive spiral galaxy, whose properties and proximity distinguish it from all known hosts. The lack of both a comparably luminous persistent radio counterpart and a high Faraday rotation measure further distinguish the local environment of FRB 180916.J0158+65 from that of the one previously localised repeating FRB source, FRB 121102. This demonstrates that repeating FRBs have a wide range of luminosities, and originate from diverse host galaxies and local environments.

224 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported the detection of a $16.35\pm 0.15$ day periodicity (or possibly a higher-frequency alias of that periodicity) from a repeating fast radio burst (FRB) 180916.J0158+65 detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project (CHIME/FRB).
Abstract: Fast radio bursts (FRBs) are bright, millisecond-duration radio transients originating from extragalactic distances. Their origin is unknown. Some FRB sources emit repeat bursts, ruling out cataclysmic origins for those events. Despite searches for periodicity in repeat burst arrival times on time scales from milliseconds to many days, these bursts have hitherto been observed to appear sporadically, and though clustered, without a regular pattern. Here we report the detection of a $16.35\pm0.15$ day periodicity (or possibly a higher-frequency alias of that periodicity) from a repeating FRB 180916.J0158+65 detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project (CHIME/FRB). In 38 bursts recorded from September 16th, 2018 through February 4th, 2020, we find that all bursts arrive in a 5-day phase window, and 50% of the bursts arrive in a 0.6-day phase window. Our results suggest a mechanism for periodic modulation either of the burst emission itself, or through external amplification or absorption, and disfavour models invoking purely sporadic processes.

224 citations

Journal ArticleDOI
18 Jun 2020-Nature
TL;DR: A periodicity of roughly 16 days is detected for the fast radio burst 180916.J0158+65, suggesting that the burst arises from a periodically modulated mechanism instead of a cataclysmic or sporadic process.
Abstract: Fast radio bursts (FRBs) are bright, millisecond-duration radio transients originating from sources at extragalactic distances1, the origin of which is unknown. Some FRB sources emit repeat bursts, ruling out cataclysmic origins for those events2–4. Despite searches for periodicity in repeat burst arrival times on timescales from milliseconds to many days2,5–7, these bursts have hitherto been observed to appear sporadically and—although clustered8—without a regular pattern. Here we report observations of a 16.35 ± 0.15 day periodicity (or possibly a higher-frequency alias of that periodicity) from the repeating FRB 180916.J0158+65 detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project4,9. In 38 bursts recorded from 16 September 2018 to 4 February 2020 utc, we find that all bursts arrive in a five-day phase window, and 50 per cent of the bursts arrive in a 0.6-day phase window. Our results suggest a mechanism for periodic modulation either of the burst emission itself or through external amplification or absorption, and disfavour models invoking purely sporadic processes.

133 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p ≲ 3 × 10−4) of an optical and persistent radio counterpart.
Abstract: The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability p ≲ 3 × 10‑4) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find that it is an extended (0.″6–0.″8) object displaying prominent Balmer and [Oiii] emission lines. Based on the spectrum and emission line ratios, we classify the counterpart as a low-metallicity, star-forming, mr‧ = 25.1 AB mag dwarf galaxy at a redshift of z =0.19273(8), corresponding to a luminosity distance of 972 Mpc. From the angular size, the redshift, and luminosity, we estimate the host galaxy to have a diameter ≲4 kpc and a stellar mass of M* ∼ (4–7) × 107 M⊙, assuming a mass-to-light ratio between 2 to 3 M⊙L⊙‑1. Based on the Hα flux, we estimate the star formation rate of the host to be 0.4 M⊙yr‑1 and a substantial host dispersion measure (DM)depth ≲324 pc cm‑3. The net DM contribution of the host galaxy to FRB 121102 is likely to be lower than this value depending on geometrical factors. We show that the persistent radio source at FRB 121102’s location reported by Marcote et al. is offset from the galaxy’s center of light by ∼200 mas and the host galaxy does not show optical signatures for AGN activity. If FRB121102 is typical of the wider FRB population and if futureinterferometric localizations preferentially find them in dwarf galaxies with low metallicities and prominent emission lines, they would share such a preference with long gamma-ray bursts and superluminous supernovae.

617 citations

Journal ArticleDOI
TL;DR: In this paper, the precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability $p\lesssim3\times10^{-4}$) of an optical and persistent radio counterpart.
Abstract: The precise localization of the repeating fast radio burst (FRB 121102) has provided the first unambiguous association (chance coincidence probability $p\lesssim3\times10^{-4}$) of an FRB with an optical and persistent radio counterpart. We report on optical imaging and spectroscopy of the counterpart and find that it is an extended ($0.6^{\prime\prime}-0.8^{\prime\prime}$) object displaying prominent Balmer and [OIII] emission lines. Based on the spectrum and emission line ratios, we classify the counterpart as a low-metallicity, star-forming, $m_{r^\prime} = 25.1$ AB mag dwarf galaxy at a redshift of $z=0.19273(8)$, corresponding to a luminosity distance of 972 Mpc. From the angular size, the redshift, and luminosity, we estimate the host galaxy to have a diameter $\lesssim4$ kpc and a stellar mass of $M_*\sim4-7\times 10^{7}\,M_\odot$, assuming a mass-to-light ratio between 2 to 3$\,M_\odot\,L_\odot^{-1}$. Based on the H$\alpha$ flux, we estimate the star formation rate of the host to be $0.4\,M_\odot\,\mathrm{yr^{-1}}$ and a substantial host dispersion measure depth $\lesssim 324\,\mathrm{pc\,cm^{-3}}$. The net dispersion measure contribution of the host galaxy to FRB 121102 is likely to be lower than this value depending on geometrical factors. We show that the persistent radio source at FRB 121102's location reported by Marcote et al (2017) is offset from the galaxy's center of light by $\sim$200 mas and the host galaxy does not show optical signatures for AGN activity. If FRB 121102 is typical of the wider FRB population and if future interferometric localizations preferentially find them in dwarf galaxies with low metallicities and prominent emission lines, they would share such a preference with long gamma ray bursts and superluminous supernovae.

576 citations

Journal ArticleDOI
11 Jan 2018-Nature
TL;DR: Observations of FRB 121102 show almost 100 per cent linearly polarized emission at a very high and variable Faraday rotation measure, demonstrating that the fast radio burst source is in an extreme and dynamic magneto-ionic environment, and the short durations of the bursts suggest a neutron star origin.
Abstract: Fast radio bursts are millisecond-duration, extragalactic radio flashes of unknown physical origin(1-3). The only known repeating fast radio burst source(4-6)-FRB 121102-has been localized to a star-forming region in a dwarf galaxy(7-9) at redshift 0.193 and is spatially coincident with a compact, persistent radio source(7,10). The origin of the bursts, the nature of the persistent source and the properties of the local environment are still unclear. Here we report observations of FRB 121102 that show almost 100 per cent linearly polarized emission at a very high and variable Faraday rotation measure in the source frame (varying from + 1.46 x 10(5) radians per square metre to + 1.33 x 10(5) radians per square metre at epochs separated by seven months) and narrow (below 30 microseconds) temporal structure. The large and variable rotation measure demonstrates that FRB 121102 is in an extreme and dynamic magneto-ionic environment, and the short durations of the bursts suggest a neutron star origin. Such large rotation measures have hitherto been observed(11,12) only in the vicinities of massive black holes (larger than about 10,000 solar masses). Indeed, the properties of the persistent radio source are compatible with those of a low-luminosity, accreting massive black hole(10). The bursts may therefore come from a neutron star in such an environment or could be explained by other models, such as a highly magnetized wind nebula(13) or supernova remnant(14) surrounding a young neutron star.

413 citations

Journal ArticleDOI
01 Nov 2020-Nature
TL;DR: In this paper, the authors reported the detection of an extremely intense radio burst from the Galactic magnetar SGR 1935+2154 using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) FRB project.
Abstract: Magnetars are highly magnetized young neutron stars that occasionally produce enormous bursts and flares of X-rays and gamma-rays. Of the approximately thirty magnetars currently known in our Galaxy and Magellanic Clouds, five have exhibited transient radio pulsations. Fast radio bursts (FRBs) are millisecond-duration bursts of radio waves arriving from cosmological distances. Some have been seen to repeat. A leading model for repeating FRBs is that they are extragalactic magnetars, powered by their intense magnetic fields. However, a challenge to this model has been that FRBs must have radio luminosities many orders of magnitude larger than those seen from known Galactic magnetars. Here we report the detection of an extremely intense radio burst from the Galactic magnetar SGR 1935+2154 using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) FRB project. The fluence of this two-component bright radio burst and the estimated distance to SGR 1935+2154 together imply a 400-800 MHz burst energy of $\sim 3 \times 10^{34}$ erg, which is three orders of magnitude brighter than those of any radio-emitting magnetar detected thus far. Such a burst coming from a nearby galaxy would be indistinguishable from a typical FRB. This event thus bridges a large fraction of the radio energy gap between the population of Galactic magnetars and FRBs, strongly supporting the notion that magnetars are the origin of at least some FRBs.

407 citations

Journal ArticleDOI
04 Nov 2020-Nature
TL;DR: A millisecond-duration radio burst from the Galactic magnetar SGR-1935+2154 with a fluence of 1.5 ± 0.3 megajansky milliseconds was detected by the STARE2 radio array in the 1,281-1,468 megahertz band.
Abstract: Since their discovery in 20071, much effort has been devoted to uncovering the sources of the extragalactic, millisecond-duration fast radio bursts (FRBs)2. A class of neutron stars known as magnetars is a leading candidate source of FRBs3,4. Magnetars have surface magnetic fields in excess of 1014 gauss, the decay of which powers a range of high-energy phenomena5. Here we report observations of a millisecond-duration radio burst from the Galactic magnetar SGR 1935+2154, with a fluence of 1.5 ± 0.3 megajansky milliseconds. This event, FRB 200428 (ST 200428A), was detected on 28 April 2020 by the STARE2 radio array6 in the 1,281–1,468 megahertz band. The isotropic-equivalent energy released in FRB 200428 is 4 × 103 times greater than that of any radio pulse from the Crab pulsar—previously the source of the brightest Galactic radio bursts observed on similar timescales7. FRB 200428 is just 30 times less energetic than the weakest extragalactic FRB observed so far8, and is drawn from the same population as the observed FRB sample. The coincidence of FRB 200428 with an X-ray burst9–11 favours emission models that describe synchrotron masers or electromagnetic pulses powered by magnetar bursts and giant flares3,4,12,13. The discovery of FRB 200428 implies that active magnetars such as SGR 1935+2154 can produce FRBs at extragalactic distances. Observations of the fast radio burst FRB 200428 coinciding with X-rays from the Galactic magnetar SGR 1935+2154 indicate that active magnetars can produce fast radio bursts at extragalactic distances.

362 citations