scispace - formally typeset
Search or ask a question
Author

A. Keshavarzi

Bio: A. Keshavarzi is an academic researcher from Intel. The author has an hindex of 1, co-authored 1 publications receiving 325 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The thermal challenges in next-generation electronic systems, as identified through panel presentations and ensuing discussions at the workshop, Thermal Challenges in Next Generation Electronic Systems, held in Santa Fe, NM, January 7-10, 2007, are summarized in this article.
Abstract: Thermal challenges in next-generation electronic systems, as identified through panel presentations and ensuing discussions at the workshop, Thermal Challenges in Next Generation Electronic Systems, held in Santa Fe, NM, January 7-10, 2007, are summarized in this paper. Diverse topics are covered, including electrothermal and multiphysics codesign of electronics, new and nanostructured materials, high heat flux thermal management, site-specific thermal management, thermal design of next-generation data centers, thermal challenges for military, automotive, and harsh environment electronic systems, progress and challenges in software tools, and advances in measurement and characterization. Barriers to further progress in each area that require the attention of the research community are identified.

368 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The modeling results suggest that graphene-multilayer graphene nanocomposite used as the thermal interface material outperforms those with carbon nanotubes or metal nanoparticles owing to graphene's aspect ratio and lower Kapitza resistance at the graphene-matrix interface.
Abstract: We found that the optimized mixture of graphene and multilayer graphene, produced by the high-yield inexpensive liquid-phase-exfoliation technique, can lead to an extremely strong enhancement of the cross-plane thermal conductivity K of the composite. The “laser flash” measurements revealed a record-high enhancement of K by 2300% in the graphene-based polymer at the filler loading fraction f = 10 vol %. It was determined that the relatively high concentration of the single-layer and bilayer graphene flakes (∼10–15%) present simultaneously with the thicker multilayers of large lateral size (∼1 μm) were essential for the observed unusual K enhancement. The thermal conductivity of the commercial thermal grease was increased from an initial value of ∼5.8 W/mK to K = 14 W/mK at the small loading f = 2%, which preserved all mechanical properties of the hybrid. Our modeling results suggest that graphene–multilayer graphene nanocomposite used as the thermal interface material outperforms those with carbon nanotub...

1,272 citations

Journal ArticleDOI
TL;DR: In this paper, the use of liquid-phase-exfoliated graphene and multilayer graphene as fillers in the thermal interface materials has been discussed, and it has been demonstrated that the addition of an optimized mixture of graphene and multi-layer graphene to the composites with different matrix materials produces the record-high enhancement of the effective thermal conductivity at the small filler loading fraction (f≤10vol%).

743 citations

Journal ArticleDOI
TL;DR: In this paper, a combination of the sensible and latent heat storage together with the improved heat conduction outside of the battery pack leads to a significant decrease in the temperature rise inside a typical Li-ion battery pack.

377 citations

Journal ArticleDOI
TL;DR: Finite element analysis reveals promising applications for the magnetically aligned hBN-based composites in modern microelectronic packaging, including significantly reduced coefficient of thermal expansion and enhanced thermal conductivity.
Abstract: We report magnetic alignment of hexagonal boron nitride (hBN) platelets and the outstanding material properties of its polymer composite. The magnetically responsive hBN is produced by surface modification of iron oxide, and their orientations can be controlled by applying an external magnetic field during polymer curing. Owing to the anisotropic properties of hBN, the epoxy composite with aligned hBN platelets shows interesting properties along the alignment direction, including significantly reduced coefficient of thermal expansion, reaching ∼28.7 ppm/°C, and enhanced thermal conductivity, 104% higher than that of unaligned counterpart, both of which are observed at a low filler loading of 20 wt %. Our modeling suggests the filler alignment is the major reason for these intriguing material properties. Finite element analysis reveals promising applications for the magnetically aligned hBN-based composites in modern microelectronic packaging.

371 citations