scispace - formally typeset
Search or ask a question
Author

A. Kruse

Bio: A. Kruse is an academic researcher from Ruhr University Bochum. The author has an hindex of 1, co-authored 2 publications receiving 946 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The 1967 IFC Formulation for Industrial Use (IFC-67) has been formally recognized to calculate thermodynamic properties of water and steam for any official use such as performance guarantee calculations of power cycles as mentioned in this paper.
Abstract: In the 1960’s an industrial formulation for the thermodynamic properties of water and steam was developed called “The 1967 IFC Formulation for Industrial Use” (IFC-67) [1]. Since 1967 IFC-67 has been formally recognized to calculate thermodynamic properties of water and steam for any official use such as performance guarantee calculations of power cycles. In addition to this, IFC-67 has been used for innumerable other industrial applications. However, during the last few years a number of weaknesses of IFC-67 have appeared. This fact and the progress that has been achieved in mathematical methods to develop accurate equations of state led to the development of a new industrial formulation in an international research project initiated and coordinated by the International Association for the Properties of Water and Steam (IAPWS).

1,043 citations

Journal Article
TL;DR: In this article, the authors present the first empirical values regarding the effects on the thermal efficiency and the calculation of steam boilers when changing from IFC 67 to IAPWS-IF97.
Abstract: Since January 1999 the new industrial formulation IAPWS-IF97 has been valid without restriction. The article presents the first empirical values regarding the effects on the thermal efficiency and the calculation of steam boilers when changing from IFC 67 to IAPWS-IF97.

1 citations


Cited by
More filters
Journal ArticleDOI
01 Aug 2014-Small
TL;DR: The bio-inspired Evaporation process provides an alternative promising approach for evaporation, and has potential applications in sterilization, distillation, and heat transfer.
Abstract: Plasmonic gold nanoparticles self-assembled at the air-water interface to produce an evaporative surface with local control inspired by skins and plant leaves. Fast and efficient evaporation is realized due to the instant and localized plasmonic heating at the evaporative surface. The bio-inspired evaporation process provides an alternative promising approach for evaporation, and has potential applications in sterilization, distillation, and heat transfer.

387 citations

Journal ArticleDOI
TL;DR: The International Association for the Properties of Water and Steam (IAPWS) encouraged an extensive research effort to update the IAPS Formulation 1985 for the Viscosity of Ordinary Water Substance, leading to the adoption of a Release on the IAPWS Formulation 2008 for the viscosity of ordinary water substance as mentioned in this paper.
Abstract: The International Association for the Properties of Water and Steam (IAPWS) encouraged an extensive research effort to update the IAPS Formulation 1985 for the Viscosity of Ordinary Water Substance, leading to the adoption of a Release on the IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance. This manuscript describes the development and evaluation of the 2008 formulation, which provides a correlating equation for the viscosity of water for fluid states up to 1173K and 1000MPa with uncertainties from less than 1% to 7% depending on the state point.

318 citations

Journal ArticleDOI
30 Sep 2011-Entropy
TL;DR: The correct application of Second Law efficiency shows which systems operate closest to the reversible limit and helps to indicate which systems have the greatest potential for improvement.
Abstract: Increasing global demand for fresh water is driving the development and implementation of a wide variety of seawater desalination technologies. Entropy generation analysis, and specifically, Second Law efficiency, is an important tool for illustrating the influence of irreversibilities within a system on the required energy input. When defining Second Law efficiency, the useful exergy output of the system must be properly defined. For desalination systems, this is the minimum least work of separation required to extract a unit of water from a feed stream of a given salinity. In order to evaluate the Second Law efficiency, entropy generation mechanisms present in a wide range of desalination processes are analyzed. In particular, entropy generated in the run down to equilibrium of discharge streams must be considered. Physical models are applied to estimate the magnitude of entropy generation by component and individual processes. These formulations are applied to calculate the total entropy generation in several desalination systems including multiple effect distillation, multistage flash, membrane distillation, mechanical vapor compression, reverse osmosis, and humidification-dehumidification. Within each technology, the relative importance of each source of entropy generation is discussed in order to determine which should be the target of entropy generation minimization. As given here, the correct application of Second Law efficiency shows which systems operate closest to the reversible limit and helps to indicate which systems have the greatest potential for improvement.

253 citations

Journal ArticleDOI
TL;DR: This model study sheds light on the solvent-induced driving forces for receptor−ligand association of general, transferable relevance for biological systems with poorly hydrated binding sites.
Abstract: Hydrophobic association is often recognized as being driven by favorable entropic contributions. Here, using explicit solvent molecular dynamics simulations we investigate binding in a model hydrophobic receptor−ligand system which appears, instead, to be driven by enthalpy and opposed by entropy. We use the temperature dependence of the potential of mean force to analyze the thermodynamic contributions along the association coordinate. Relating such contributions to the ongoing changes in system hydration allows us to demonstrate that the overall binding thermodynamics is determined by the expulsion of disorganized water from the receptor cavity. Our model study sheds light on the solvent-induced driving forces for receptor−ligand association of general, transferable relevance for biological systems with poorly hydrated binding sites.

217 citations

Journal ArticleDOI
TL;DR: In this article, Taron et al. introduced a new methodology and numerical simulator for the modeling of thermal-hydrologic-mechanical-chemical processes in dual-porosity media.

200 citations