scispace - formally typeset
Search or ask a question
Author

A. Kunicka

Bio: A. Kunicka is an academic researcher. The author has contributed to research in topics: Essential oil & Antibacterial agent. The author has an hindex of 1, co-authored 1 publications receiving 1547 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This paper reviews the classical methods commonly used for the evaluation of essential oils antibacterial and antifungal activities and finds essential oils of spices and herbs were found to possess the strongest antimicrobial properties among many tested.
Abstract: In recent years there has been an increasing interest in the use of natural substances, and some questions concerning the safety of synthetic compounds have encouraged more detailed studies of plant resources. Essential oils, odorous and volatile products of plant secondary metabolism, have a wide application in folk medicine, food flavouring and preservation as well as in fragrance industries. The antimicrobial properties of essential oils have been known for many centuries. In recent years (1987-2001), a large number of essential oils and their constituents have been investigated for their antimicrobial properties against some bacteria and fungi in more than 500 reports. This paper reviews the classical methods commonly used for the evaluation of essential oils antibacterial and antifungal activities. The agar diffusion method (paper disc and well) and the dilution method (agar and liquid broth) as well as turbidimetric and impedimetric monitoring of microorganism growth in the presence of tested essential oils are described. Factors influencing the in vitro antimicrobial activity of essential oils and the mechanisms of essential oils action on microorganisms are reported. This paper gives an overview on the susceptibility of human and food-borne bacteria and fungi towards different essential oils and their constituents. Essential oils of spices and herbs (thyme, origanum, mint, cinnamon, salvia and clove) were found to possess the strongest antimicrobial properties among many tested.

1,690 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Findings suggest that, at least in part, the encountered beneficial effects of essential oils are due to prooxidant effects on the cellular level.

6,174 citations

Journal ArticleDOI
TL;DR: The past, present and future of medicinal plants are analyzed, both as potential antimicrobial crude drugs as well as a source for natural compounds that act as new anti-infection agents.

1,665 citations

Journal ArticleDOI
TL;DR: An overview of current knowledge about the antibacterial properties and antibacterial mode of action of essential oils and their constituents is provided, and research avenues that can facilitate implementation of essential oil constituents as natural preservatives in foods are identified.
Abstract: Essential oils are aromatic and volatile liquids extracted from plants. The chemicals in essential oils are secondary metabolites, which play an important role in plant defense as they often possess antimicrobial properties. The interest in essential oils and their application in food preservation has been amplified in recent years by an increasingly negative consumer perception of synthetic preservatives. Furthermore, food-borne diseases are a growing public health problem worldwide, calling for more effective preservation strategies. The antibacterial properties of essential oils and their constituents have been documented extensively. Pioneering work has also elucidated the mode of action of a few essential oil constituents, but detailed knowledge about most of the compounds’ mode of action is still lacking. This knowledge is particularly important to predict their effect on different microorganisms, how they interact with food matrix components, and how they work in combination with other antimicrobial compounds. The main obstacle for using essential oil constituents as food preservatives is that they are most often not potent enough as single components, and they cause negative organoleptic effects when added in sufficient amounts to provide an antimicrobial effect. Exploiting synergies between several compounds has been suggested as a solution to this problem. However, little is known about which interactions lead to synergistic, additive, or antagonistic effects. Such knowledge could contribute to design of new and more potent antimicrobial blends, and to understand the interplay between the constituents of crude essential oils. The purpose of this review is to provide an overview of current knowledge about the antibacterial properties and antibacterial mode of action of essential oils and their constituents, and to identify research avenues that can facilitate implementation of essential oils as natural preservatives in foods.

1,509 citations

Journal ArticleDOI
TL;DR: The chemical composition and biological effects of clove essential oil are addressed, and new results from GC/MS analysis and a study of its antimicrobial activity against a large number of multi‐resistant Staphylococcus epidermidis isolated from dialysis biomaterials are included.
Abstract: The essential oil extracted from the dried flower buds of clove, Eugenia caryophyllata L. Merr. & Perry (Myrtaceae), is used as a topical application to relieve pain and to promote healing and also finds use in the fragrance and flavouring industries. The main constituents of the essential oil are phenylpropanoids such as carvacrol, thymol, eugenol and cinnamaldehyde. The biological activity of Eugenia caryophyllata has been investigated on several microorganisms and parasites, including pathogenic bacteria, Herpes simplex and hepatitis C viruses. In addition to its antimicrobial, antioxidant, antifungal and antiviral activity, clove essential oil possesses antiinflammatory, cytotoxic, insect repellent and anaesthetic properties. This short review addresses the chemical composition and biological effects of clove essential oil, and includes new results from GC/MS analysis and a study of its antimicrobial activity against a large number of multi-resistant Staphylococcus epidermidis isolated from dialysis biomaterials.

831 citations

Journal ArticleDOI
TL;DR: The in vitro antibacterial activities of a total of 46 extracts from dietary spices and medicinal herbs investigated by agar-well diffusion method suggested that the antibacterial activity of the tested extracts was closely associated with their phenolic constituents.

778 citations