scispace - formally typeset
Search or ask a question
Author

A L Cruz Ruiz

Bio: A L Cruz Ruiz is an academic researcher from French Institute for Research in Computer Science and Automation. The author has contributed to research in topics: Computer animation & Overhead (computing). The author has an hindex of 3, co-authored 3 publications receiving 28 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A classification of control methods, tables summarizing their key aspects and popular neuromuscular functions used within these controllers, all with the purpose of providing the reader with an overview of the field.
Abstract: Muscle-based control is transforming the field of physics-based character animation through the integration of knowledge from neuroscience, biomechanics and robotics, which enhance motion realism. Since any physics-based animation system can be extended to a muscle-actuated system, the possibilities of growth are tremendous. However, modelling muscles and their control remains a difficult challenge. We present an organized review of over a decade of research in muscle-based control for character animation, its fundamental concepts and future directions for development. The core of this review contains a classification of control methods, tables summarizing their key aspects and popular neuromuscular functions used within these controllers, all with the purpose of providing the reader with an overview of the field.

18 citations

Journal ArticleDOI
TL;DR: A new musculoskeletal-based limb controller including a linearizing feedback of the musculOSkeletal structure and a PID control of the limb position is introduced with the objective to enhance virtual avatar animation.
Abstract: In the field of computer animation, producing a realistic procedural avatar animation based on dynamics remains challenging.Recent advances in musculoskeletal simulation have enhanced drastically t...

3 citations


Cited by
More filters
Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

01 Jan 2016
TL;DR: Biomechanics and motor control of human movement is downloaded so that people can enjoy a good book with a cup of tea in the afternoon instead of juggling with some malicious virus inside their laptop.
Abstract: Thank you very much for downloading biomechanics and motor control of human movement. Maybe you have knowledge that, people have search hundreds times for their favorite books like this biomechanics and motor control of human movement, but end up in infectious downloads. Rather than enjoying a good book with a cup of tea in the afternoon, instead they juggled with some malicious virus inside their laptop.

1,689 citations

31 Jul 2005
TL;DR: In this paper, a complete and consistent anatomical dataset containing the orientations of joints (hip, knee, ankle and subtalar joints), muscle parameters (optimum length, physiological cross sectional area), and geometrical parameters (attachment sites, ‘via’ points) was presented.
Abstract: Background: To assist in the treatment of gait disorders, an inverse and forward 3D musculoskeletal model of the lower extremity will be useful that allows to evaluate if–then scenarios. Currently available anatomical datasets do not comprise sufficiently accurate and complete information to construct such a model. The aim of this paper is to present a complete and consistent anatomical dataset, containing the orientations of joints (hip, knee, ankle and subtalar joints), muscle parameters (optimum length, physiological cross sectional area), and geometrical parameters (attachment sites, ‘via’ points). Methods: One lower extremity, taken from a male embalmed specimen, was studied. Position and geometry were measured with a 3D-digitizer. Optotrak was used for measurement of rotation axes of joints. Sarcomere length was measured by laser diffraction. Findings: A total of 38 muscles were measured. Each muscle was divided in different muscle lines of action based on muscle morphology. 14 Ligaments of the hip, knee and ankle were included. Interpretation: The presented anatomical dataset embraces all necessary data for state of the art musculoskeletal modelling of the lower extremity. Implementation of these data into an (existing) model is likely to significantly improve the estimation of muscle forces and will thus make the use of the model as a clinical tool more feasible.

350 citations

Journal ArticleDOI
TL;DR: The present systematical review aims at providing an overview on the applications of muscle synergy theory in clinics, robotics, and sports; in particular, the review is focused on the papers that provide tangible information for diagnosis or pathology assessment in clinic, robot-control design in Robotics, and athletes' performance assessment or training guidelines in sports.
Abstract: In the last years, several studies have been focused on understanding how the central nervous system controls muscles to perform a specific motor task. Although it still remains an open question, muscle synergies have come to be an appealing theory to explain the modular organization of the central nervous system. Even though the neural encoding of muscle synergies remains controversial, a large number of papers demonstrated that muscle synergies are robust across different tested conditions, which are within a day, between days, within a single subject, and between subjects that have similar demographic characteristics. Thus, muscle synergy theory has been largely used in several research fields, such as clinics, robotics, and sports. The present systematical review aims at providing an overview on the applications of muscle synergy theory in clinics, robotics, and sports; in particular, the review is focused on the papers that provide tangible information for (i) diagnosis or pathology assessment in clinics, (ii) robot-control design in robotics, and (iii) athletes' performance assessment or training guidelines in sports.

66 citations

Journal ArticleDOI
TL;DR: An overview of sport biomechanics applications found from recent literature using wearable sensors is provided, highlighting some information related to the used sensors and analysis methods to help researchers, athletes, and coaches to understand the technologies currently available for sport performance assessment.
Abstract: In the last few decades, a number of technological developments have advanced the spread of wearable sensors for the assessment of human motion. These sensors have been also developed to assess athletes' performance, providing useful guidelines for coaching, as well as for injury prevention. The data from these sensors provides key performance outcomes as well as more detailed kinematic, kinetic, and electromyographic data that provides insight into how the performance was obtained. From this perspective, inertial sensors, force sensors, and electromyography appear to be the most appropriate wearable sensors to use. Several studies were conducted to verify the feasibility of using wearable sensors for sport applications by using both commercially available and customized sensors. The present study seeks to provide an overview of sport biomechanics applications found from recent literature using wearable sensors, highlighting some information related to the used sensors and analysis methods. From the literature review results, it appears that inertial sensors are the most widespread sensors for assessing athletes' performance; however, there still exist applications for force sensors and electromyography in this context. The main sport assessed in the studies was running, even though the range of sports examined was quite high. The provided overview can be useful for researchers, athletes, and coaches to understand the technologies currently available for sport performance assessment.

61 citations