scispace - formally typeset
Search or ask a question
Author

A. L. Peratt

Bio: A. L. Peratt is an academic researcher. The author has an hindex of 1, co-authored 1 publications receiving 4 citations.

Papers
More filters
Journal Article
TL;DR: Peratt et al. as mentioned in this paper focused on the achievements to date in simulating and experimentally producing plasmas scaled to both astrophysical and cosmic plasma dimensions, and outlined the algorithms and computational growth.
Abstract: Advances in the simulation of astrophysical and cosmic plasmas are the direct result of advances in computational capabilities, today consisting of new techniques such as multilevel concurrent simulation, multi-teraflop computational platforms and experimental facilities for producing and diagnosing plasmas under extreme conditions for the benchmarking of simulations. Examples of these are the treatment of mesoscalic plasma and the scaling to astrophysical and cosmic dimensions and the Accelerated Strategic Computing Initiative whose goal is to construct petaflop (1015 floating operations per second) computers, and pulsed power and laser inertial confinement plasmas where megajoules of energy are delivered to highly-diagnosed plasmas. This paper concentrates on the achievements to date in simulating and experimentally producing plasmas scaled to both astrophysical and cosmic plasma dimensions. A previous paper (Part I, Peratt, 1997) outlines the algorithms and computational growth.

4 citations


Cited by
More filters
01 Jan 2007
TL;DR: LASER-INDUCED BREAKDOWN SPECTROSCOPY on BACTERIAL SAMPLES by JONATHAN DIEDRICH December 2007 Advisor: Dr. Steven J. Rehse
Abstract: LASER-INDUCED BREAKDOWN SPECTROSCOPY ON BACTERIAL SAMPLES BY JONATHAN DIEDRICH December 2007 Advisor: Dr. Steven J. Rehse

4 citations

DOI
09 Dec 2011
TL;DR: In this paper, experimentelle Untersuchungen zur Wechselwirkung ultra-kurzer (10 fs, 800 nm) Laserpulse with Helium-Nanotropfchen are presented.
Abstract: Die vorliegende Arbeit beschreibt experimentelle Untersuchungen zur Wechselwirkung ultrakurzer (10 fs, 800 nm) Laserpulse mit Helium-Nanotropfchen. In Einpulsmessungen konnte bei Spitzenintensitaten im Bereich von 10^14 bis 10^15 W/cm^2 gezeigt werden, dass weniger als 10 Dotierungsatome in einem aus 10000 Heliumatomen bestehenden Tropchen um eine vollstandige Ionisierung zu “zunden” ausreichen. Diese experimentellen Beobachtungen, die durch theoretische Modellrechnungen gestutzt werden, zeigen erstmalig die sehr effiziente Absorption und resonante Kopplung intensiver Laserfelder im nahen Infraroten an Cluster-Nanoplasmen auf einer Zeitskala von 10 fs. Anhand von Pump-Probe Messungen, die mit zwei zeitlich verzogerten Laserpulsen durchgefuhrt wurden, konnte die Auswirkung der Dotierung auf die bei der Ausdehnung des teilweise ionisierten Clusters auftretende Nanoplasma- Resonanz untersucht werden. Die Rolle der sich im Zentrum des Clusters befindlichen hochgeladenen Dotierungsatome (typischerweise Xenon) und der sie umgebenden Schale aus Helium-Ionen auf die auf (Sub-) Pikosekunden-Zeitskalen stattfindende Clusterexpansion wurde untersucht. Hierbei wurde erstmalig die Wichtigkeit der sich schnell ausdehnenden Helium-Schalen experimentell erkannt, wodurch die vorliegende Arbeit den Anstos zu einer neuen Betrachtungsweise der expansionsinduzierten Resonanz in dotierten Nanotropfchen liefert.

2 citations

Book ChapterDOI
01 Jan 2015
TL;DR: Driven by increased computer capabilities, the original TRISTAN code (Buneman et al. 1980) has been continuously updated to TRISTan-PRIME.
Abstract: Driven by increased computer capabilities, the original TRISTAN code (Buneman et al 1980; Peratt AL, TRISTAN user’s manual, Los Alamos National Laboratory, Pulsed Energy Applications, X-10, unpublished report, 1984) has been continuously updated to TRISTAN-PRIME

1 citations

01 Jan 1987
TL;DR: In this paper, a model of the local magnetic field in the plane of the Galaxy roughly in the direction of its local spiral arm was derived from the optical polarization of starlight.
Abstract: The observations of the optical polarization of starlight [1,2] showed large-scale alignment of the vectors which was interpreted to be due to galactic magnetic fields which align interstellar grains [3]. The data on star polarization accumulated over many years (e.g. [4,5,6]) giving in the end a large sample of objects at known distances. This data was used (e.g. [7]) to derive a model of the local magnetic field. From this observational data a field component along the plane of the Galaxy roughly in the direction of the local spiral arm was deduced with other pertubations that were attributed to the North Polar Spur [8]. Optical data give us information about the field direction and only indirectly about the field strength.