scispace - formally typeset
Search or ask a question
Author

A. L. Spadafora

Bio: A. L. Spadafora is an academic researcher from Lawrence Berkeley National Laboratory. The author has contributed to research in topics: Supernova & Redshift. The author has an hindex of 33, co-authored 105 publications receiving 10495 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a set of high-redshift supernovae were used to confirm previous supernova evidence for an accelerating universe, and the supernova results were combined with independent flat-universe measurements of the mass density from CMB and galaxy redshift distortion data, they provided a measurement of $w=-1.05^{+0.15}-0.09$ if w is assumed to be constant in time.
Abstract: We report measurements of $\Omega_M$, $\Omega_\Lambda$, and w from eleven supernovae at z=0.36-0.86 with high-quality lightcurves measured using WFPC-2 on the HST. This is an independent set of high-redshift supernovae that confirms previous supernova evidence for an accelerating Universe. Combined with earlier Supernova Cosmology Project data, the new supernovae yield a flat-universe measurement of the mass density $\Omega_M=0.25^{+0.07}_{-0.06}$ (statistical) $\pm0.04$ (identified systematics), or equivalently, a cosmological constant of $\Omega_\Lambda=0.75^{+0.06}_{-0.07}$ (statistical) $\pm0.04$ (identified systematics). When the supernova results are combined with independent flat-universe measurements of $\Omega_M$ from CMB and galaxy redshift distortion data, they provide a measurement of $w=-1.05^{+0.15}_{-0.20}$ (statistical) $\pm0.09$ (identified systematic), if w is assumed to be constant in time. The new data offer greatly improved color measurements of the high-redshift supernovae, and hence improved host-galaxy extinction estimates. These extinction measurements show no anomalous negative E(B-V) at high redshift. The precision of the measurements is such that it is possible to perform a host-galaxy extinction correction directly for individual supernovae without any assumptions or priors on the parent E(B-V) distribution. Our cosmological fits using full extinction corrections confirm that dark energy is required with $P(\Omega_\Lambda>0)>0.99$, a result consistent with previous and current supernova analyses which rely upon the identification of a low-extinction subset or prior assumptions concerning the intrinsic extinction distribution.

1,687 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a new compilation of Type Ia supernovae (SNe Ia), a new dataset of low-redshift nearby-Hubble-flow SNe and new analysis procedures to work with these heterogeneous compilations.
Abstract: We present a new compilation of Type Ia supernovae (SNe Ia), a new dataset of low-redshift nearby-Hubble-flow SNe and new analysis procedures to work with these heterogeneous compilations. This ``Union'' compilation of 414 SN Ia, which reduces to 307 SNe after selection cuts, includes the recent large samples of SNe Ia from the Supernova Legacy Survey and ESSENCE Survey, the older datasets, as well as the recently extended dataset of distant supernovae observed with HST. A single, consistent and blind analysis procedure is used for all the various SN Ia subsamples, and a new procedure is implemented that consistently weights the heterogeneous data sets and rejects outliers. We present the latest results from this Union compilation and discuss the cosmological constraints from this new compilation and its combination with other cosmological measurements (CMB and BAO). The constraint we obtain from supernovae on the dark energy density is $\Omega_\Lambda= 0.713^{+0.027}_{-0.029} (stat)}^{+0.036}_{-0.039} (sys)}$, for a flat, LCDM Universe. Assuming a constant equation of state parameter, $w$, the combined constraints from SNe, BAO and CMB give $w=-0.969^{+0.059}_{-0.063}(stat)^{+0.063}_{-0.066} (sys)$. While our results are consistent with a cosmological constant, we obtain only relatively weak constraints on a $w$ that varies with redshift. In particular, the current SN data do not yet significantly constrain $w$ at $z>1$. With the addition of our new nearby Hubble-flow SNe Ia, these resulting cosmological constraints are currently the tightest available.

1,578 citations

Journal ArticleDOI
TL;DR: In this paper, a set of high-redshift supernovae were used to confirm previous supernova evidence for an accelerating universe, and the supernova results were combined with independent flat-universe measurements of the mass density from CMB and galaxy redshift distortion data, they provided a measurement of $w=-1.05^{+0.15}-0.09$ if w is assumed to be constant in time.
Abstract: We report measurements of $\Omega_M$, $\Omega_\Lambda$, and w from eleven supernovae at z=0.36-0.86 with high-quality lightcurves measured using WFPC-2 on the HST. This is an independent set of high-redshift supernovae that confirms previous supernova evidence for an accelerating Universe. Combined with earlier Supernova Cosmology Project data, the new supernovae yield a flat-universe measurement of the mass density $\Omega_M=0.25^{+0.07}_{-0.06}$ (statistical) $\pm0.04$ (identified systematics), or equivalently, a cosmological constant of $\Omega_\Lambda=0.75^{+0.06}_{-0.07}$ (statistical) $\pm0.04$ (identified systematics). When the supernova results are combined with independent flat-universe measurements of $\Omega_M$ from CMB and galaxy redshift distortion data, they provide a measurement of $w=-1.05^{+0.15}_{-0.20}$ (statistical) $\pm0.09$ (identified systematic), if w is assumed to be constant in time. The new data offer greatly improved color measurements of the high-redshift supernovae, and hence improved host-galaxy extinction estimates. These extinction measurements show no anomalous negative E(B-V) at high redshift. The precision of the measurements is such that it is possible to perform a host-galaxy extinction correction directly for individual supernovae without any assumptions or priors on the parent E(B-V) distribution. Our cosmological fits using full extinction corrections confirm that dark energy is required with $P(\Omega_\Lambda>0)>0.99$, a result consistent with previous and current supernova analyses which rely upon the identification of a low-extinction subset or prior assumptions concerning the intrinsic extinction distribution.

1,537 citations

Journal ArticleDOI
TL;DR: A new compilation of Type Ia supernovae (SNe Ia), a new data set of low-redshift nearby-Hubble-flow SNe, and new analysis procedures to work with these heterogeneous compilations is presented in this article.
Abstract: We present a new compilation of Type Ia supernovae (SNe Ia), a new data set of low-redshift nearby-Hubble-flow SNe, and new analysis procedures to work with these heterogeneous compilations This "Union" compilation of 414 SNe Ia, which reduces to 307 SNe after selection cuts, includes the recent large samples of SNe Ia from the Supernova Legacy Survey and ESSENCE Survey, the older data sets, as well as the recently extended data set of distant supernovae observed with the Hubble Space Telescope (HST) A single, consistent, and blind analysis procedure is used for all the various SN Ia subsamples, and a new procedure is implemented that consistently weights the heterogeneous data sets and rejects outliers We present the latest results from this Union compilation and discuss the cosmological constraints from this new compilation and its combination with other cosmological measurements (CMB and BAO) The constraint we obtain from supernovae on the dark energy density is ΩΛ = 0713+ 0027−0029(stat)+ 0036−0039(sys) , for a flat, ΛCDM universe Assuming a constant equation of state parameter, w, the combined constraints from SNe, BAO, and CMB give w = − 0969+ 0059−0063(stat)+ 0063−0066(sys) While our results are consistent with a cosmological constant, we obtain only relatively weak constraints on a w that varies with redshift In particular, the current SN data do not yet significantly constrain w at z > 1 With the addition of our new nearby Hubble-flow SNe Ia, these resulting cosmological constraints are currently the tightest available

1,420 citations

Journal ArticleDOI
TL;DR: In this article, Kowalski et al. report on work to increase the number of well-measured Type Ia supernovae (SNe Ia) at high redshifts.
Abstract: We report on work to increase the number of well-measured Type Ia supernovae (SNe Ia) at high redshifts. Light curves, including high signal-to-noise HST data, and spectra of six SNe Ia that were discovered during 2001 are presented. Additionally, for the two SNe with z>1, we present ground-based J-band photometry from Gemini and the VLT. These are among the most distant SNe Ia for which ground based near-IR observations have been obtained. We add these six SNe Ia together with other data sets that have recently become available in the literature to the Union compilation (Kowalski et al. 2008). We have made a number of refinements to the Union analysis chain, the most important ones being the refitting of all light curves with the SALT2 fitter and an improved handling of systematic errors. We call this new compilation, consisting of 557 supernovae, the Union2 compilation. The flat concordance LambdaCDM model remains an excellent fit to the Union2 data with the best fit constant equation of state parameter w=-0.997^{+0.050}_{-0.054} (stat) ^{+0.077}_{-0.082} (stat+sys\ together) for a flat universe, or w=-1.035^{+0.055}_{-0.059} (stat)^{+0.093}_{-0.097} (stat+sys together) with curvature. We also present improved constraints on w(z). While no significant change in w with redshift is detected, there is still considerable room for evolution in w. The strength of the constraints depend strongly on redshift. In particular, at z > 1, the existence and nature of dark energy are only weakly constrained by the data.

1,273 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions.
Abstract: The combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions. By combining the WMAP data with the latest distance measurements from the baryon acoustic oscillations (BAO) in the distribution of galaxies and the Hubble constant (H0) measurement, we determine the parameters of the simplest six-parameter ΛCDM model. The power-law index of the primordial power spectrum is ns = 0.968 ± 0.012 (68% CL) for this data combination, a measurement that excludes the Harrison–Zel’dovich–Peebles spectrum by 99.5% CL. The other parameters, including those beyond the minimal set, are also consistent with, and improved from, the five-year results. We find no convincing deviations from the minimal model. The seven-year temperature power spectrum gives a better determination of the third acoustic peak, which results in a better determination of the redshift of the matter-radiation equality epoch. Notable examples of improved parameters are the total mass of neutrinos, � mν < 0.58 eV (95% CL), and the effective number of neutrino species, Neff = 4.34 +0.86 −0.88 (68% CL), which benefit from better determinations of the third peak and H0. The limit on a constant dark energy equation of state parameter from WMAP+BAO+H0, without high-redshift Type Ia supernovae, is w =− 1.10 ± 0.14 (68% CL). We detect the effect of primordial helium on the temperature power spectrum and provide a new test of big bang nucleosynthesis by measuring Yp = 0.326 ± 0.075 (68% CL). We detect, and show on the map for the first time, the tangential and radial polarization patterns around hot and cold spots of temperature fluctuations, an important test of physical processes at z = 1090 and the dominance of adiabatic scalar fluctuations. The seven-year polarization data have significantly improved: we now detect the temperature–E-mode polarization cross power spectrum at 21σ , compared with 13σ from the five-year data. With the seven-year temperature–B-mode cross power spectrum, the limit on a rotation of the polarization plane due to potential parity-violating effects has improved by 38% to Δα =− 1. 1 ± 1. 4(statistical) ± 1. 5(systematic) (68% CL). We report significant detections of the Sunyaev–Zel’dovich (SZ) effect at the locations of known clusters of galaxies. The measured SZ signal agrees well with the expected signal from the X-ray data on a cluster-by-cluster basis. However, it is a factor of 0.5–0.7 times the predictions from “universal profile” of Arnaud et al., analytical models, and hydrodynamical simulations. We find, for the first time in the SZ effect, a significant difference between the cooling-flow and non-cooling-flow clusters (or relaxed and non-relaxed clusters), which can explain some of the discrepancy. This lower amplitude is consistent with the lower-than-theoretically expected SZ power spectrum recently measured by the South Pole Telescope Collaboration.

11,309 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, C. Armitage-Caplan3, Monique Arnaud4  +324 moreInstitutions (70)
TL;DR: In this paper, the authors present the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra, which are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations.
Abstract: This paper presents the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra. We find that the Planck spectra at high multipoles (l ≳ 40) are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations. Within the context of this cosmology, the Planck data determine the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be θ∗ = (1.04147 ± 0.00062) × 10-2, Ωbh2 = 0.02205 ± 0.00028, Ωch2 = 0.1199 ± 0.0027, and ns = 0.9603 ± 0.0073, respectively(note that in this abstract we quote 68% errors on measured parameters and 95% upper limits on other parameters). For this cosmology, we find a low value of the Hubble constant, H0 = (67.3 ± 1.2) km s-1 Mpc-1, and a high value of the matter density parameter, Ωm = 0.315 ± 0.017. These values are in tension with recent direct measurements of H0 and the magnitude-redshift relation for Type Ia supernovae, but are in excellent agreement with geometrical constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent level precision using Planck CMB data alone. We use high-resolution CMB data together with Planck to provide greater control on extragalactic foreground components in an investigation of extensions to the six-parameter ΛCDM model. We present selected results from a large grid of cosmological models, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured over the standard six-parameter ΛCDM cosmology. The deviation of the scalar spectral index from unity isinsensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find an upper limit of r0.002< 0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles beyond the three families of neutrinos in the standard model. Using BAO and CMB data, we find Neff = 3.30 ± 0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the sum of neutrino masses. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of Neff = 3.046. We find no evidence for dynamical dark energy; using BAO and CMB data, the dark energy equation of state parameter is constrained to be w = -1.13-0.10+0.13. We also use the Planck data to set limits on a possible variation of the fine-structure constant, dark matter annihilation and primordial magnetic fields. Despite the success of the six-parameter ΛCDM model in describing the Planck data at high multipoles, we note that this cosmology does not provide a good fit to the temperature power spectrum at low multipoles. The unusual shape of the spectrum in the multipole range 20 ≲ l ≲ 40 was seen previously in the WMAP data and is a real feature of the primordial CMB anisotropies. The poor fit to the spectrum at low multipoles is not of decisive significance, but is an “anomaly” in an otherwise self-consistent analysis of the Planck temperature data.

7,060 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra, which are extremely well described by the standard spatially-flat six-parameter LCDM cosmology.
Abstract: We present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra. The Planck spectra at high multipoles are extremely well described by the standard spatially-flat six-parameter LCDM cosmology. In this model Planck data determine the cosmological parameters to high precision. We find a low value of the Hubble constant, H0=67.3+/-1.2 km/s/Mpc and a high value of the matter density parameter, Omega_m=0.315+/-0.017 (+/-1 sigma errors) in excellent agreement with constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent-level precision using Planck CMB data alone. We present results from an analysis of extensions to the standard cosmology, using astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured significantly over standard LCDM. The deviation of the scalar spectral index from unity is insensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find a 95% upper limit of r<0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles. Using BAO and CMB data, we find N_eff=3.30+/-0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the summed neutrino mass. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of N_eff=3.046. We find no evidence for dynamical dark energy. Despite the success of the standard LCDM model, this cosmology does not provide a good fit to the CMB power spectrum at low multipoles, as noted previously by the WMAP team. While not of decisive significance, this is an anomaly in an otherwise self-consistent analysis of the Planck temperature data.

6,201 citations

Journal ArticleDOI
TL;DR: In this article, a simple cosmological model with only six parameters (matter density, Omega_m h^2, baryon density, BH density, Hubble Constant, H_0, amplitude of fluctuations, sigma_8, optical depth, tau, and a slope for the scalar perturbation spectrum, n_s) was proposed to fit the three-year WMAP temperature and polarization data.
Abstract: A simple cosmological model with only six parameters (matter density, Omega_m h^2, baryon density, Omega_b h^2, Hubble Constant, H_0, amplitude of fluctuations, sigma_8, optical depth, tau, and a slope for the scalar perturbation spectrum, n_s) fits not only the three year WMAP temperature and polarization data, but also small scale CMB data, light element abundances, large-scale structure observations, and the supernova luminosity/distance relationship. Using WMAP data only, the best fit values for cosmological parameters for the power-law flat LCDM model are (Omega_m h^2, Omega_b h^2, h, n_s, tau, sigma_8) = 0.1277+0.0080-0.0079, 0.02229+-0.00073, 0.732+0.031-0.032, 0.958+-0.016, 0.089+-0.030, 0.761+0.049-0.048). The three year data dramatically shrink the allowed volume in this six dimensional parameter space. Assuming that the primordial fluctuations are adiabatic with a power law spectrum, the WMAP data_alone_ require dark matter, and favor a spectral index that is significantly less than the Harrison-Zel'dovich-Peebles scale-invariant spectrum (n_s=1, r=0). Models that suppress large-scale power through a running spectral index or a large-scale cut-off in the power spectrum are a better fit to the WMAP and small scale CMB data than the power-law LCDM model: however, the improvement in the fit to the WMAP data is only Delta chi^2 = 3 for 1 extra degree of freedom. The combination of WMAP and other astronomical data yields significant constraints on the geometry of the universe, the equation of state of the dark energy, the gravitational wave energy density, and neutrino properties. Consistent with the predictions of simple inflationary theories, we detect no significant deviations from Gaussianity in the CMB maps.

6,002 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the observational evidence for the current accelerated expansion of the universe and present a number of dark energy models in addition to the conventional cosmological constant, paying particular attention to scalar field models such as quintessence, K-essence and tachyon.
Abstract: We review in detail a number of approaches that have been adopted to try and explain the remarkable observation of our accelerating universe. In particular we discuss the arguments for and recent progress made towards understanding the nature of dark energy. We review the observational evidence for the current accelerated expansion of the universe and present a number of dark energy models in addition to the conventional cosmological constant, paying particular attention to scalar field models such as quintessence, K-essence, tachyon, phantom and dilatonic models. The importance of cosmological scaling solutions is emphasized when studying the dynamical system of scalar fields including coupled dark energy. We study the evolution of cosmological perturbations allowing us to confront them with the observation of the Cosmic Microwave Background and Large Scale Structure and demonstrate how it is possible in principle to reconstruct the equation of state of dark energy by also using Supernovae Ia observational data. We also discuss in detail the nature of tracking solutions in cosmology, particle physics and braneworld models of dark energy, the nature of possible future singularities, the effect of higher order curvature terms to avoid a Big Rip singularity, and approaches to modifying gravity which leads to a late-time accelerated expansion without recourse to a new form of dark energy.

5,954 citations