scispace - formally typeset
Search or ask a question
Author

A Lenz

Bio: A Lenz is an academic researcher from University of St. Gallen. The author has contributed to research in topics: Human skin & Skin Physiological Phenomena. The author has an hindex of 3, co-authored 3 publications receiving 505 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Increasing skin hydration seems to cause gender-specific changes in the mechanical properties and/or surface topography of human skin, leading to skin softening and increased real contact area and adhesion.
Abstract: Friction and shear forces, as well as moisture between the human skin and textiles are critical factors in the formation of skin injuries such as blisters, abrasions and decubitus. This study investigated how epidermal hydration affects the friction between skin and textiles. The friction between the inner forearm and a hospital fabric was measured in the natural skin condition and in different hydration states using a force plate. Eleven males and eleven females rubbed their forearm against the textile on the force plate using defined normal loads and friction movements. Skin hydration and viscoelasticity were assessed by corneometry and the suction chamber method, respectively. In each individual, a highly positive linear correlation was found between skin moisture and friction coefficient (COF). No correlation was observed between moisture and elasticity, as well as between elasticity and friction. Skin viscoelasticity was comparable for women and men. The friction of female skin showed significantly higher moisture sensitivity. COFs increased typically by 43% (women) and 26% (men) when skin hydration varied between very dry and normally moist skin. The COFs between skin and completely wet fabric were more than twofold higher than the values for natural skin rubbed on a dry textile surface. Increasing skin hydration seems to cause gender-specific changes in the mechanical properties and/or surface topography of human skin, leading to skin softening and increased real contact area and adhesion.

282 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the friction behavior of human skin by combining friction measurements using a tri-axial force plate with skin contact area measurements using pressure sensitive film and found that adhesion was involved in all investigated cases of friction between skin and glass.

172 citations

Journal ArticleDOI
TL;DR: This study has investigated in detail the influence of age on the friction of human skin against textiles.
Abstract: Background/purpose: The mechanical properties of human skin are known to change with ageing, rendering skin less resistant to friction and shear forces, as well as more vulnerable to wounds. Until now, only few and contradictory results on the age-dependent friction properties of skin have been reported. This study has investigated in detail the influence of age on the friction of human skin against textiles. Methods: In vivo skin-friction measurements on a force plate were combined with skin analyses concerning elasticity, hydration, pH value and sebum content. Thirty-two young and 28 aged persons rubbed their volar forearm in a reciprocating motion against various textiles on the force plate, using defined normal loads and sliding velocities, representing clinically relevant contact conditions. Results: Mean friction coefficients ranged from 0.30 ± 0.04 (polytetrafluoroethylene) to 0.43 ± 0.04 (cotton/polyester). No significant differences in the friction properties of skin were found between the age groups despite skin elasticity being significantly lower in the aged persons. Skin hydration was significantly higher in the elderly, whereas no significant differences were observed in either skin pH value or sebum content. Conclusion: Adhesion is usually assumed to be the dominant factor in skin friction, but our observations imply that deformation is also an important factor in the friction of aged skin. In the elderly, lower skin elasticity and skin turgor are associated with more pronounced skin tissue displacements and greater shear forces during frictional contact, emphasizing the importance of friction reduction in wound-prevention programmes.

113 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review summarizes recent advances in the area of tribology based on the outcome of a Lorentz Center workshop surveying various physical, chemical and mechanical phenomena across scales, and proposes some research directions.

347 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the current knowledge on the tribology of human skin and present an analysis of the available experimental results for skin friction coefficients, showing that substantial variations are a characteristic feature of friction coefficients measured for skin and that differences in skin hydration are the main cause thereof, followed by the influences of surface and material properties of contacting materials.
Abstract: In this review, we discuss the current knowledge on the tribology of human skin and present an analysis of the available experimental results for skin friction coefficients. Starting with an overview on the factors influencing the friction behaviour of skin, we discuss the up-to-date existing experimental data and compare the results for different anatomical skin areas and friction measurement techniques. For this purpose, we also estimated and analysed skin contact pressures applied during the various friction measurements. The detailed analyses show that substantial variations are a characteristic feature of friction coefficients measured for skin and that differences in skin hydration are the main cause thereof, followed by the influences of surface and material properties of the contacting materials. When the friction coefficients of skin are plotted as a function of the contact pressure, the majority of the literature data scatter over a wide range that can be explained by the adhesion friction model. The case of dry skin is reflected by relatively low and pressure-independent friction coefficients (greater than 0.2 and typically around 0.5), comparable to the dry friction of solids with rough surfaces. In contrast, the case of moist or wet skin is characterised by significantly higher (typically >1) friction coefficients that increase strongly with decreasing contact pressure and are essentially determined by the mechanical shear properties of wet skin. In several studies, effects of skin deformation mechanisms contributing to the total friction are evident from friction coefficients increasing with contact pressure. However, the corresponding friction coefficients still lie within the range delimited by the adhesion friction model. Further research effort towards the analysis of the microscopic contact area and mechanical properties of the upper skin layers is needed to improve our so far limited understanding of the complex tribological behaviour of human skin.

341 citations

Journal ArticleDOI
TL;DR: Many aspects of both grip function and tactile perception depend on complex frictional interactions occurring in the contact zone of the finger pad, which is the subject of the current review.
Abstract: Many aspects of both grip function and tactile perception depend on complex frictional interactions occurring in the contact zone of the finger pad, which is the subject of the current review. While it is well established that friction plays a crucial role in grip function, its exact contribution for discriminatory touch involving the sliding of a finger pad is more elusive. For texture discrimination, it is clear that vibrotaction plays an important role in the discriminatory mechanisms. Among other factors, friction impacts the nature of the vibrations generated by the relative movement of the fingertip skin against a probed object. Friction also has a major influence on the perceived tactile pleasantness of a surface. The contact mechanics of a finger pad is governed by the fingerprint ridges and the sweat that is exuded from pores located on these ridges. Counterintuitively, the coefficient of friction can increase by an order of magnitude in a period of tens of seconds when in contact with an impermeably smooth surface, such as glass. In contrast, the value will decrease for a porous surface, such as paper. The increase in friction is attributed to an occlusion mechanism and can be described by first-order kinetics. Surprisingly, the sensitivity of the coefficient of friction to the normal load and sliding velocity is comparatively of second order, yet these dependencies provide the main basis of theoretical models which, to-date, largely ignore the time evolution of the frictional dynamics. One well-known effect on taction is the possibility of inducing stick–slip if the friction decreases with increasing sliding velocity. Moreover, the initial slip of a finger pad occurs by the propagation of an annulus of failure from the perimeter of the contact zone and this phenomenon could be important in tactile perception and grip function.

238 citations

Journal ArticleDOI
TL;DR: This work combines material science with psychophysics to manufacture and haptically explore a series of topographically patterned surfaces of controlled wavelength, but identical chemistry, demonstrating that human tactile discrimination extends to the nanoscale.
Abstract: The human finger is exquisitely sensitive in perceiving different materials, but the question remains as to what length scales are capable of being distinguished in active touch. We combine material science with psychophysics to manufacture and haptically explore a series of topographically patterned surfaces of controlled wavelength, but identical chemistry. Strain-induced surface wrinkling and subsequent templating produced 16 surfaces with wrinkle wavelengths ranging from 300 nm to 90 mm and amplitudes between 7 nm and 4.5 mm. Perceived similarities of these surfaces (and two blanks) were pairwise scaled by participants, and interdistances among all stimuli were determined by individual differences scaling (INDSCAL). The tactile space thus generated and its two perceptual dimensions were directly linked to surface physical properties – the finger friction coefficient and the wrinkle wavelength. Finally, the lowest amplitude of the wrinkles so distinguished was approximately 10 nm, demonstrating that human tactile discrimination extends to the nanoscale.

235 citations

Journal ArticleDOI
TL;DR: Effective integration between the electronic components with garments, human skin, and living organisms is illustrated, presenting multifunctional platforms with self-powered potential for human-robot interactions and biomedicine.
Abstract: Soft robotics inspired by the movement of living organisms, with excellent adaptability and accuracy for accomplishing tasks, are highly desirable for efficient operations and safe interactions with human. With the emerging wearable electronics, higher tactility and skin affinity are pursued for safe and user-friendly human-robot interactions. Fabrics interlocked by fibers perform traditional static functions such as warming, protection, and fashion. Recently, dynamic fibers and fabrics are favorable to deliver active stimulus responses such as sensing and actuating abilities for soft-robots and wearables. First, the responsive mechanisms of fiber/fabric actuators and their performances under various external stimuli are reviewed. Fiber/yarn-based artificial muscles for soft-robots manipulation and assistance in human motion are discussed, as well as smart clothes for improving human perception. Second, the geometric designs, fabrications, mechanisms, and functions of fibers/fabrics for sensing and energy harvesting from the human body and environments are summarized. Effective integration between the electronic components with garments, human skin, and living organisms is illustrated, presenting multifunctional platforms with self-powered potential for human-robot interactions and biomedicine. Lastly, the relationships between robotic/wearable fibers/fabrics and the external stimuli, together with the challenges and possible routes for revolutionizing the robotic fibers/fabrics and wearables in this new era are proposed.

207 citations