scispace - formally typeset
Search or ask a question
Author

A.M. Alattar

Bio: A.M. Alattar is an academic researcher. The author has contributed to research in topics: Image restoration & Payload (computing). The author has an hindex of 1, co-authored 1 publications receiving 1055 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Results indicate that the spatial, quad-based algorithm developed for color images allows for hiding the largest payload at the highest signal-to-noise ratio.
Abstract: A reversible watermarking algorithm with very high data-hiding capacity has been developed for color images. The algorithm allows the watermarking process to be reversed, which restores the exact original image. The algorithm hides several bits in the difference expansion of vectors of adjacent pixels. The required general reversible integer transform and the necessary conditions to avoid underflow and overflow are derived for any vector of arbitrary length. Also, the potential payload size that can be embedded into a host image is discussed, and a feedback system for controlling this size is developed. In addition, to maximize the amount of data that can be hidden into an image, the embedding algorithm can be applied recursively across the color components. Simulation results using spatial triplets, spatial quads, cross-color triplets, and cross-color quads are presented and compared with the existing reversible watermarking algorithms. These results indicate that the spatial, quad-based algorithm allows for hiding the largest payload at the highest signal-to-noise ratio.

1,149 citations


Cited by
More filters
Book
23 Nov 2007
TL;DR: This new edition now contains essential information on steganalysis and steganography, and digital watermark embedding is given a complete update with new processes and applications.
Abstract: Digital audio, video, images, and documents are flying through cyberspace to their respective owners. Unfortunately, along the way, individuals may choose to intervene and take this content for themselves. Digital watermarking and steganography technology greatly reduces the instances of this by limiting or eliminating the ability of third parties to decipher the content that he has taken. The many techiniques of digital watermarking (embedding a code) and steganography (hiding information) continue to evolve as applications that necessitate them do the same. The authors of this second edition provide an update on the framework for applying these techniques that they provided researchers and professionals in the first well-received edition. Steganography and steganalysis (the art of detecting hidden information) have been added to a robust treatment of digital watermarking, as many in each field research and deal with the other. New material includes watermarking with side information, QIM, and dirty-paper codes. The revision and inclusion of new material by these influential authors has created a must-own book for anyone in this profession. *This new edition now contains essential information on steganalysis and steganography *New concepts and new applications including QIM introduced *Digital watermark embedding is given a complete update with new processes and applications

1,773 citations

Journal ArticleDOI
TL;DR: The experimental results for many standard test images show that prediction-error expansion doubles the maximum embedding capacity when compared to difference expansion, and there is a significant improvement in the quality of the watermarked image, especially at moderate embedding capacities.
Abstract: Reversible watermarking enables the embedding of useful information in a host signal without any loss of host information. Tian's difference-expansion technique is a high-capacity, reversible method for data embedding. However, the method suffers from undesirable distortion at low embedding capacities and lack of capacity control due to the need for embedding a location map. We propose a histogram shifting technique as an alternative to embedding the location map. The proposed technique improves the distortion performance at low embedding capacities and mitigates the capacity control problem. We also propose a reversible data-embedding technique called prediction-error expansion. This new technique better exploits the correlation inherent in the neighborhood of a pixel than the difference-expansion scheme. Prediction-error expansion and histogram shifting combine to form an effective method for data embedding. The experimental results for many standard test images show that prediction-error expansion doubles the maximum embedding capacity when compared to difference expansion. There is also a significant improvement in the quality of the watermarked image, especially at moderate embedding capacities

1,229 citations

Journal ArticleDOI
TL;DR: This paper presents a reversible or lossless watermarking algorithm for images without using a location map in most cases that employs prediction errors to embed data into an image.
Abstract: This paper presents a reversible or lossless watermarking algorithm for images without using a location map in most cases. This algorithm employs prediction errors to embed data into an image. A sorting technique is used to record the prediction errors based on magnitude of its local variance. Using sorted prediction errors and, if needed, though rarely, a reduced size location map allows us to embed more data into the image with less distortion. The performance of the proposed reversible watermarking scheme is evaluated using different images and compared with four methods: those of Kamstra and Heijmans, Thodi and Rodriguez, and Lee et al. The results clearly indicate that the proposed scheme can embed more data with less distortion.

773 citations

Journal ArticleDOI
Lixin Luo1, Zhenyong Chen1, Ming Chen1, Xiao Zeng1, Zhang Xiong1 
TL;DR: A novel reversible watermarking scheme using an interpolation technique, which can embed a large amount of covert data into images with imperceptible modification, and can provide greater payload capacity and higher image fidelity compared with other state-of-the-art schemes.
Abstract: Watermarking embeds information into a digital signal like audio, image, or video. Reversible image watermarking can restore the original image without any distortion after the hidden data is extracted. In this paper, we present a novel reversible watermarking scheme using an interpolation technique, which can embed a large amount of covert data into images with imperceptible modification. Different from previous watermarking schemes, we utilize the interpolation-error, the difference between interpolation value and corresponding pixel value, to embed bit ?1? or ?0? by expanding it additively or leaving it unchanged. Due to the slight modification of pixels, high image quality is preserved. Experimental results also demonstrate that the proposed scheme can provide greater payload capacity and higher image fidelity compared with other state-of-the-art schemes.

645 citations

Journal ArticleDOI
TL;DR: A binary tree structure is exploited to solve the problem of communicating pairs of peak points and distribution of pixel differences is used to achieve large hiding capacity while keeping the distortion low.
Abstract: In this letter, we present a reversible data hiding scheme based on histogram modification. We exploit a binary tree structure to solve the problem of communicating pairs of peak points. Distribution of pixel differences is used to achieve large hiding capacity while keeping the distortion low. We also adopt a histogram shifting technique to prevent overflow and underflow. Performance comparisons with other existing schemes are provided to demonstrate the superiority of the proposed scheme.

550 citations