scispace - formally typeset
Search or ask a question
Author

A.M.J. Koonen

Other affiliations: Philips, Alcatel-Lucent, AT&T
Bio: A.M.J. Koonen is an academic researcher from Eindhoven University of Technology. The author has contributed to research in topics: Multi-mode optical fiber & Wavelength-division multiplexing. The author has an hindex of 37, co-authored 506 publications receiving 6625 citations. Previous affiliations of A.M.J. Koonen include Philips & Alcatel-Lucent.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors demonstrate the viability of spatial multiplexing to reach a data rate of 5.1 Tbit/s−1/carrier−1 on a single wavelength over a single fiber, by employing few-mode multicore fiber, compact three-dimensional waveguide multiplexers and energy-efficient frequency-domain MIMO equalization.
Abstract: Single-mode fibres with low loss and a large transmission bandwidth are a key enabler for long-haul high-speed optical communication and form the backbone of our information-driven society. However, we are on the verge of reaching the fundamental limit of single-mode fibre transmission capacity. Therefore, a new means to increase the transmission capacity of optical fibre is essential to avoid a capacity crunch. Here, by employing few-mode multicore fibre, compact three-dimensional waveguide multiplexers and energy-efficient frequency-domain multiple-input multiple-output equalization, we demonstrate the viability of spatial multiplexing to reach a data rate of 5.1 Tbit s−1 carrier−1 (net 4 Tbit s−1 carrier−1) on a single wavelength over a single fibre. Furthermore, by combining this approach with wavelength division multiplexing with 50 wavelength carriers on a dense 50 GHz grid, a gross transmission throughput of 255 Tbit s−1 (net 200 Tbit s−1) over a 1 km fibre link is achieved. A few-mode, multicore fibre allows ultra-high-speed data transmission on a single wavelength of light.

426 citations

Journal ArticleDOI
TL;DR: It is shown that by pulse amplitude modulation of the subcarriers used, the resulting PAM-DMT time signal can be clipped asymmetrically to achieve a unipolar signal for transmission.
Abstract: A novel concept of pulse-amplitude-modulated discrete multitone modulation (PAM-DMT) is presented. It is shown that by pulse amplitude modulation of the subcarriers used, the resulting PAM-DMT time signal can be clipped asymmetrically to achieve a unipolar signal for transmission. The distortion resulting from this asymmetric clipping is orthogonal to the information signal itself, causing no additional penalty. Especially in intensity-modulated direct-detection optical channels, where a unipolar signal is to be transmitted, it is shown that this idea can improve system performance.

241 citations

Journal ArticleDOI
26 Mar 2007
TL;DR: In this paper, the authors demonstrate error-free wavelength conversion at 320 Gb/s by employing a semiconductor optical amplifier that fully recovers in 56 ps. Error-free operation is achieved without using forward error correction technology.
Abstract: We demonstrate error-free wavelength conversion at 320 Gb/s by employing a semiconductor optical amplifier that fully recovers in 56 ps. Error-free operation is achieved without using forward error correction technology. We employ optical filtering to select the blue sideband of the spectrum of the probe light, to utilize fast chirp dynamics introduced by the amplifier, and to overcome the slow gain recovery. This leads to an effective recovery time of less than 1.8 ps for the wavelength converter. The wavelength converter has a simple configuration and is implemented by using fiber-pigtailed components. The concept allows photonic integration

234 citations

Journal ArticleDOI
TL;DR: The Information Society Technologies-all-optical LAbel SwApping employing optical logic gates in NEtwork nodes (IST-LASAGNE) project as mentioned in this paper aims at designing and implementing the first, modular, scalable, and truly alloptical photonic router capable of operating at 40 Gb/s.
Abstract: The Information Society Technologies-all-optical LAbel SwApping employing optical logic Gates in NEtwork nodes (IST-LASAGNE) project aims at designing and implementing the first, modular, scalable, and truly all-optical photonic router capable of operating at 40 Gb/s. The results of the first project year are presented in this paper, with emphasis on the implementation of network node functionalities employing optical logic gates and optical flip-flops, as well as the definition of the network architecture and migration scenarios.

209 citations

Journal ArticleDOI
TL;DR: In this paper, the optical frequency multiplying (OFM) technique is proposed to overcome the modal dispersion in multimode fiber links in multi-GHz mm-wave networks.
Abstract: Microwave to mm-wave radio carriers are commonly employed for creating high-capacity picocell wireless networks. Advanced radio-over-fiber (RoF) techniques can efficiently generate and transport such carriers, and deliver them to simplified antenna stations. As in in-building networks multimode fiber is predominantly used, adequate radio-over-multimode fiber (RoMMF) techniques are required to overcome the modal dispersion in multimode fiber links. The optical frequency multiplying technique is introduced; it is relatively simple to implement, yet it is shown to be robust against the modal dispersion, and it is able to generate very pure microwave carriers while requiring only moderate speed electronics. Thus, it can convey high data rates in comprehensive modulation formats on multiple-GHz carriers in MMF networks. It offers simultaneous operation at multiple radio standards, and capabilities for dynamic adaptation of the radio link parameters such as carrier frequency, transmit power, and other antenna site functions by means of an embedded control channel. Moreover, in combination with optical routing it enables dynamically adjustable network configurations for flexible wireless service delivery.

166 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors summarized the simultaneous transmission of several independent spatial channels of light along optical fibres to expand the data-carrying capacity of optical communications, and showed that the results achieved in both multicore and multimode optical fibers are documented.
Abstract: This Review summarizes the simultaneous transmission of several independent spatial channels of light along optical fibres to expand the data-carrying capacity of optical communications. Recent results achieved in both multicore and multimode optical fibres are documented.

2,629 citations

Journal ArticleDOI
TL;DR: In this paper, the authors give a tutorial overview of OFDM and highlight the aspects that are likely to be important in optical applications, and discuss the constraints imposed by single mode optical fiber, multimode optical fiber and optical wireless.
Abstract: Orthogonal frequency division multiplexing (OFDM) is a modulation technique which is now used in most new and emerging broadband wired and wireless communication systems because it is an effective solution to intersymbol interference caused by a dispersive channel. Very recently a number of researchers have shown that OFDM is also a promising technology for optical communications. This paper gives a tutorial overview of OFDM highlighting the aspects that are likely to be important in optical applications. To achieve good performance in optical systems OFDM must be adapted in various ways. The constraints imposed by single mode optical fiber, multimode optical fiber and optical wireless are discussed and the new forms of optical OFDM which have been developed are outlined. The main drawbacks of OFDM are its high peak to average power ratio and its sensitivity to phase noise and frequency offset. The impairments that these cause are described and their implications for optical systems discussed.

1,761 citations

01 Jan 2007
TL;DR: In this paper, the authors provide updates to IEEE 802.16's MIB for the MAC, PHY and asso-ciated management procedures in order to accommodate recent extensions to the standard.
Abstract: This document provides updates to IEEE Std 802.16's MIB for the MAC, PHY and asso- ciated management procedures in order to accommodate recent extensions to the standard.

1,481 citations

Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art technologies on photonics-based terahertz communications are compared with competing technologies based on electronics and free-space optical communications.
Abstract: This Review covers the state-of-the-art technologies on photonics-based terahertz communications, which are compared with competing technologies based on electronics and free-space optical communications. Future prospects and challenges are also discussed. Almost 15 years have passed since the initial demonstrations of terahertz (THz) wireless communications were made using both pulsed and continuous waves. THz technologies are attracting great interest and are expected to meet the ever-increasing demand for high-capacity wireless communications. Here, we review the latest trends in THz communications research, focusing on how photonics technologies have played a key role in the development of first-age THz communication systems. We also provide a comparison with other competitive technologies, such as THz transceivers enabled by electronic devices as well as free-space lightwave communications.

1,238 citations