scispace - formally typeset
Search or ask a question
Author

A. M. T. Pollock

Bio: A. M. T. Pollock is an academic researcher from European Space Agency. The author has contributed to research in topics: Stars & Wolf–Rayet star. The author has an hindex of 33, co-authored 127 publications receiving 4347 citations. Previous affiliations of A. M. T. Pollock include University of Cambridge & University of Birmingham.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a 2D hydrodynamics code was proposed to model the dynamics of the wind and shock structure formed by the collision in early-type binary systems, which self-consistently accounts for radiative cooling and represents a significant improvement over previous attempts to model these systems.
Abstract: The dynamics of the wind and shock structure formed by the wind collision in early-type binary systems is examined by means of a 2D hydrodynamics code, which self-consistently accounts for radiative cooling, and represents a significant improvement over previous attempts to model these systems. The X-ray luminosity and spectra of the shock-heated region, accounting for wind attenuation and the influence of different abundances on the resultant level and spectra of X-ray emission are calculated. A variety of dynamical instabilities that are found to dominate the intershock region is examined. These instabilities are found to be particularly important when postshock material is able to cool. These instabilities disrupt the postshock flow and add a time variability of order 10 percent to the X-ray luminosity. The X-ray spectrum of these systems is found to vary with the nuclear abundances of winds. These theoretical models are used to study several massive binary systems, in particular V444 Cyg and HD 193793.

577 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the coronal models of stars to calculate the EUV contribution to the stellar spectra, assuming that thermal losses dominate the mass loss of their atmospheres.
Abstract: Context. The current distribution of planet mass vs. incident stellar X-ray flux supports the idea that photoevaporation of the atmosphere may take place in close-in planets. Integrated effects have to be accounted for. A proper calculation of the mass loss rate through photoevaporation requires the estimation of the total irradiation from the whole XUV (X-rays and extreme ultraviolet, EUV) range. Aims. The purpose of this paper is to extend the analysis of the photoevaporation in planetary atmospheres from the accessible X-rays to the mostly unobserved EUV range by using the coronal models of stars to calculate the EUV contribution to the stellar spectra. The mass evolution of planets can be traced assuming that thermal losses dominate the mass loss of their atmospheres. Methods. We determine coronal models for 82 stars with exoplanets that have X-ray observations available. Then a synthetic spectrum is produced for the whole XUV range (∼1−912 A). The determination of the EUV stellar flux, calibrated with real EUV data, allows us to calculate the accumulated effects of the XUV irradiation on the planet atmosphere with time, as well as the mass evolution for planets with known density. Results. We calibrate for the first time a relation of the EUV luminosity with stellar age valid for late-type stars. In a sample of 109 exoplanets, few planets with masses larger than ∼1.5 MJ receive high XUV flux, suggesting that intense photoevaporation takes place in a short period of time, as previously found in X-rays. The scenario is also consistent with the observed distribution of planet masses with density. The accumulated effects of photoevaporation over time indicate that HD 209458b may have lost 0.2 MJ since an age of 20 Myr. Conclusions. Coronal radiation produces rapid photoevaporation of the atmospheres of planets close to young late-type stars. More complex models are needed to explain the observations fully. Spectral energy distributions in the XUV range are made available for stars in the sample through the Virtual Observatory for the use in future planet atmospheric models.

358 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the coronal models of stars to calculate the EUV contribution to the stellar spectra, assuming that thermal losses dominate the mass loss of their atmospheres.
Abstract: Context: The current distribution of planet mass vs. incident stellar X-ray flux supports the idea that photoevaporation of the atmosphere may take place in close-in planets. Integrated effects have to be accounted for. A proper calculation of the mass loss rate due to photoevaporation requires to estimate the total irradiation from the whole XUV range. Aims: The purpose of this paper is to extend the analysis of the photoevaporation in planetary atmospheres from the accessible X-rays to the mostly unobserved EUV range by using the coronal models of stars to calculate the EUV contribution to the stellar spectra. The mass evolution of planets can be traced assuming that thermal losses dominate the mass loss of their atmospheres. Methods: We determine coronal models for 82 stars with exoplanets that have X-ray observations available. Then a synthetic spectrum is produced for the whole XUV range (~1-912 A). The determination of the EUV stellar flux, calibrated with real EUV data, allows us to calculate the accumulated effects of the XUV irradiation on the planet atmosphere with time, as well as the mass evolution for planets with known density. Results: We calibrate for the first time a relation of the EUV luminosity with stellar age valid for late-type stars. In a sample of 109 exoplanets, few planets with masses larger than ~1.5 Mj receive high XUV flux, suggesting that intense photoevaporation takes place in a short period of time, as previously found in X-rays. The scenario is also consistent with the observed distribution of planet masses with density. The accumulated effects of photoevaporation over time indicate that HD 209458b may have lost 0.2 Mj since an age of 20 Myr. Conclusions: Coronal radiation produces rapid photoevaporation of the atmospheres of planets close to young late-type stars. More complex models are needed to explain fully the observations.

229 citations

Journal Article
TL;DR: Les observations RX, IR and radio du systeme Wolf-Rayet WR 140, WC 7 + O 4-5, realisees de 1979 a 1989 sont presentees La photometrie IR, les courbes de lumiere, la periode, les elements orbitaux et les parametres physiques sont analyses as discussed by the authors.
Abstract: Les observations RX, IR et radio du systeme Wolf-Rayet WR 140, WC 7 + O 4-5, realisees de 1979 a 1989 sont presentees La photometrie IR, les courbes de lumiere, la periode, les elements orbitaux et les parametres physiques sont analyses

204 citations

Journal ArticleDOI
TL;DR: A uniform analysis of all 48 Wolf-Rayet stars observed with the IPC of the Einstein Observatory showed that their X-ray luminosities cover a range of more than two orders of magnitude.
Abstract: A uniform analysis of all 48 Wolf-Rayet stars observed with the IPC of the Einstein Observatory shows that their X-ray luminosities cover a range of more than two orders of magnitude. Most of the brightest stars are either also sources of nonthermal radio radiation, in which case the measurements interpreted as Compton scattering of photospheric radiation by relativistic electrons imply surface magnetic fields of up to a few hundred Gauss, or massive binary systems where the X-rays could come from colliding winds. The single stars and many of the stars that have been proposed as low-mass binaries are geneally among the faintest objects and probably emit a lower proportion of their bolometric luminosities at X-ray frequencies than OB stars of similar absolute magnitude. 64 references.

182 citations


Cited by
More filters
15 Mar 1979
TL;DR: In this article, the experimental estimation of parameters for models can be solved through use of the likelihood ratio test, with particular attention to photon counting experiments, and procedures presented solve a greater range of problems than those currently in use, yet are no more difficult to apply.
Abstract: Many problems in the experimental estimation of parameters for models can be solved through use of the likelihood ratio test. Applications of the likelihood ratio, with particular attention to photon counting experiments, are discussed. The procedures presented solve a greater range of problems than those currently in use, yet are no more difficult to apply. The procedures are proved analytically, and examples from current problems in astronomy are discussed.

1,748 citations

Journal ArticleDOI
TL;DR: A review of the successes and problems of both the classical dynamical theory and the standard theory of magnetostatic support, from both observational and theoretical perspectives, is given in this paper.
Abstract: Understanding the formation of stars in galaxies is central to much of modern astrophysics. However, a quantitative prediction of the star formation rate and the initial distribution of stellar masses remains elusive. For several decades it has been thought that the star formation process is primarily controlled by the interplay between gravity and magnetostatic support, modulated by neutral-ion drift (known as ambipolar diffusion in astrophysics). Recently, however, both observational and numerical work has begun to suggest that supersonic turbulent flows rather than static magnetic fields control star formation. To some extent, this represents a return to ideas popular before the importance of magnetic fields to the interstellar gas was fully appreciated. This review gives a historical overview of the successes and problems of both the classical dynamical theory and the standard theory of magnetostatic support, from both observational and theoretical perspectives. The outline of a new theory relying on control by driven supersonic turbulence is then presented. Numerical models demonstrate that, although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic-scale star formation. It suggests that individual star-forming cores are likely not quasistatic objects, but dynamically collapsing. Accretion onto these objects varies depending on the properties of the surrounding turbulent flow; numerical models agree with observations showing decreasing rates. The initial mass distribution of stars may also be determined by the turbulent flow. Molecular clouds appear to be transient objects forming and dissolving in the larger-scale turbulent flow, or else quickly collapsing into regions of violent star formation. Global star formation in galaxies appears to be controlled by the same balance between gravity and turbulence as small-scale star formation, although modulated by cooling and differential rotation. The dominant driving mechanism in star-forming regions of galaxies appears to be supernovae, while elsewhere coupling of rotation to the gas through magnetic fields or gravity may be important.

1,630 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed to use the idea of super levels first pioneered by Anderson to improve the performance of the non-LTE radiative transfer code of Hillier stars with stellar winds.
Abstract: Extensive modifications to the non-LTE radiative transfer code of Hillier have been made in order to improve the spectroscopic analysis of stars with stellar winds. The main improvement to the code is the inclusion of blanketing due to thousands of overlapping lines. To implement this effect, we have used the idea of super levels first pioneered by Anderson. In our approach, levels with similar excitation energies and levels are grouped together. Within this group, we assume that the departure coefficients are identical. Only the population (or equivalently, the departure coefficient) of the super level need be solved in order to fully specify the populations of the levels within a super level. Our approach is a natural extension of the single-level LTE assumption, and thus LTE is recovered exactly at depth. In addition to the line blanketing modifications, the code has been improved significantly in other regards. In particular, the new code incorporates the effect of level dissolution, the influence of resonances in the photoionization cross sections, and the effect of Auger ionization. Electron scattering with a thermal redistribution can be considered, although it is normally treated coherently in the comoving frame (which still leads to redistribution in the observer's frame). Several example calculations are described to demonstrate the importance of line blanketing on spectroscopic analysis. We find that the inclusion of blanketing modifies the strengths of some optical CNO lines in Wolf-Rayet (W-R) stars by factors of 2-5. In particular, the strengths of the WC classification lines C III λ5696 and C IV λ5805 are both increased because of iron blanketing. This should help alleviate problems found with nonblanketed models, which were incapable of matching the strengths of these lines. We also find that, in the UV (1100-1800 A), the influence of Fe is readily seen in both emission and absorption. The emission is sensitive to the iron abundance and should allow, for the first time, Fe abundances to be deduced in W-R stars. The improvements made to our code should greatly facilitate the spectroscopic analysis of stars with stellar winds. We will be able to determine the importance and influence of line blanketing, as well as of several other effects that have been included in the new code. It will also allow us to better determine W-R star parameters, such as luminosity, elemental abundances, wind velocity, and mass-loss rate. With future application to related objects, such as novae and supernovae, our new code should also improve our understanding of these objects with extended outflowing atmospheres.

1,115 citations

01 May 2000
TL;DR: A review of the successes and problems of both the classical dynamical theory and the standard theory of magnetostatic support, from both observational and theoretical perspectives, is given in this article.
Abstract: Understanding the formation of stars in galaxies is central to much of modern astrophysics. However, a quantitative prediction of the star formation rate and the initial distribution of stellar masses remains elusive. For several decades it has been thought that the star formation process is primarily controlled by the interplay between gravity and magnetostatic support, modulated by neutral-ion drift (known as ambipolar diffusion in astrophysics). Recently, however, both observational and numerical work has begun to suggest that supersonic turbulent flows rather than static magnetic fields control star formation. To some extent, this represents a return to ideas popular before the importance of magnetic fields to the interstellar gas was fully appreciated. This review gives a historical overview of the successes and problems of both the classical dynamical theory and the standard theory of magnetostatic support, from both observational and theoretical perspectives. The outline of a new theory relying on control by driven supersonic turbulence is then presented. Numerical models demonstrate that, although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic-scale star formation. It suggests that individual star-forming cores are likely not quasistatic objects, but dynamically collapsing. Accretion onto these objects varies depending on the properties of the surrounding turbulent flow; numerical models agree with observations showing decreasing rates. The initial mass distribution of stars may also be determined by the turbulent flow. Molecular clouds appear to be transient objects forming and dissolving in the larger-scale turbulent flow, or else quickly collapsing into regions of violent star formation. Global star formation in galaxies appears to be controlled by the same balance between gravity and turbulence as small-scale star formation, although modulated by cooling and differential rotation. The dominant driving mechanism in star-forming regions of galaxies appears to be supernovae, while elsewhere coupling of rotation to the gas through magnetic fields or gravity may be important.

1,077 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the current knowledge and understanding of the interstellar medium of our galaxy and discuss the interaction of these interstellar constituents, both with each other and with stars, in the framework of the general galactic ecosystem.
Abstract: This article reviews the current knowledge and understanding of the interstellar medium of our galaxy. The author first presents each of the three basic constituents---ordinary matter, cosmic rays, and magnetic fields---of the interstellar medium, with emphasis on their physical and chemical properties as inferred from a broad range of observations. The interaction of these interstellar constituents, both with each other and with stars, is then discussed in the framework of the general galactic ecosystem.

986 citations