scispace - formally typeset
Search or ask a question
Author

A.M. Tekalp

Bio: A.M. Tekalp is an academic researcher from Koç University. The author has contributed to research in topics: Motion estimation & Image restoration. The author has an hindex of 50, co-authored 225 publications receiving 10468 citations. Previous affiliations of A.M. Tekalp include Rensselaer Polytechnic Institute & Bilkent University.


Papers
More filters
Proceedings ArticleDOI
10 Dec 2002
TL;DR: A prediction-based conditional entropy coder which utilizes static portions of the host as side-information improves the compression efficiency, and thus the lossless data embedding capacity.
Abstract: We present a novel reversible (lossless) data hiding (embedding) technique, which enables the exact recovery of the original host signal upon extraction of the embedded information. A generalization of the well-known LSB (least significant bit) modification is proposed as the data embedding method, which introduces additional operating points on the capacity-distortion curve. Lossless recovery of the original is achieved by compressing portions of the signal that are susceptible to embedding distortion, and transmitting these compressed descriptions as a part of the embedded payload. A prediction-based conditional entropy coder which utilizes static portions of the host as side-information improves the compression efficiency, and thus the lossless data embedding capacity.

1,126 citations

Journal ArticleDOI
TL;DR: In this paper, a generalization of the well-known least significant bit (LSB) modification is proposed as the data-embedding method, which introduces additional operating points on the capacity-distortion curve.
Abstract: We present a novel lossless (reversible) data-embedding technique, which enables the exact recovery of the original host signal upon extraction of the embedded information. A generalization of the well-known least significant bit (LSB) modification is proposed as the data-embedding method, which introduces additional operating points on the capacity-distortion curve. Lossless recovery of the original is achieved by compressing portions of the signal that are susceptible to embedding distortion and transmitting these compressed descriptions as a part of the embedded payload. A prediction-based conditional entropy coder which utilizes unaltered portions of the host signal as side-information improves the compression efficiency and, thus, the lossless data-embedding capacity.

1,058 citations

Journal ArticleDOI
TL;DR: The proposed framework includes some novel low-level processing algorithms, such as dominant color region detection, robust shot boundary detection, and shot classification, as well as some higher-level algorithms for goal detection, referee detection,and penalty-box detection.
Abstract: We propose a fully automatic and computationally efficient framework for analysis and summarization of soccer videos using cinematic and object-based features. The proposed framework includes some novel low-level processing algorithms, such as dominant color region detection, robust shot boundary detection, and shot classification, as well as some higher-level algorithms for goal detection, referee detection, and penalty-box detection. The system can output three types of summaries: i) all slow-motion segments in a game; ii) all goals in a game; iii) slow-motion segments classified according to object-based features. The first two types of summaries are based on cinematic features only for speedy processing, while the summaries of the last type contain higher-level semantics. The proposed framework is efficient, effective, and robust. It is efficient in the sense that there is no need to compute object-based features when cinematic features are sufficient for the detection of certain events, e.g., goals in soccer. It is effective in the sense that the framework can also employ object-based features when needed to increase accuracy (at the expense of more computation). The efficiency, effectiveness, and robustness of the proposed framework are demonstrated over a large data set, consisting of more than 13 hours of soccer video, captured in different countries and under different conditions.

943 citations

Proceedings ArticleDOI
23 Mar 1992
TL;DR: A new two-step procedure is proposed, and it is shown that the POCS formulation presented for the high-resolution image reconstruction problem can also be used as a new method for the restoration of spatially invariant blurred images.
Abstract: The authors address the problem of reconstruction of a high-resolution image from a number of lower-resolution (possibly noisy) frames of the same scene where the successive frames are uniformly based versions of each other at subpixel displacements. In particular, two previously proposed methods, a frequency-domain method and a method based on projections onto convex sets (POCSs), are extended to take into account the presence of both sensor blurring and observation noise. A new two-step procedure is proposed, and it is shown that the POCS formulation presented for the high-resolution image reconstruction problem can also be used as a new method for the restoration of spatially invariant blurred images. Some simulation results are provided. >

377 citations

Journal ArticleDOI
TL;DR: A novel framework for lossless (invertible) authentication watermarking is presented, which enables zero-distortion reconstruction of the un-watermarked images upon verification and enables public(-key) authentication without granting access to the perfect original and allows for efficient tamper localization.
Abstract: We present a novel framework for lossless (invertible) authentication watermarking, which enables zero-distortion reconstruction of the un-watermarked images upon verification. As opposed to earlier lossless authentication methods that required reconstruction of the original image prior to validation, the new framework allows validation of the watermarked images before recovery of the original image. This reduces computational requirements in situations when either the verification step fails or the zero-distortion reconstruction is not needed. For verified images, integrity of the reconstructed image is ensured by the uniqueness of the reconstruction procedure. The framework also enables public(-key) authentication without granting access to the perfect original and allows for efficient tamper localization. Effectiveness of the framework is demonstrated by implementing the framework using hierarchical image authentication along with lossless generalized-least significant bit data embedding.

289 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends to discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.
Abstract: The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends. Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns of both the object and the scene, nonrigid object structures, object-to-object and object-to-scene occlusions, and camera motion. Tracking is usually performed in the context of higher-level applications that require the location and/or shape of the object in every frame. Typically, assumptions are made to constrain the tracking problem in the context of a particular application. In this survey, we categorize the tracking methods on the basis of the object and motion representations used, provide detailed descriptions of representative methods in each category, and examine their pros and cons. Moreover, we discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.

5,318 citations

Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations

01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations

Journal ArticleDOI
TL;DR: The goal of this article is to introduce the concept of SR algorithms to readers who are unfamiliar with this area and to provide a review for experts to present the technical review of various existing SR methodologies which are often employed.
Abstract: A new approach toward increasing spatial resolution is required to overcome the limitations of the sensors and optics manufacturing technology. One promising approach is to use signal processing techniques to obtain an high-resolution (HR) image (or sequence) from observed multiple low-resolution (LR) images. Such a resolution enhancement approach has been one of the most active research areas, and it is called super resolution (SR) (or HR) image reconstruction or simply resolution enhancement. In this article, we use the term "SR image reconstruction" to refer to a signal processing approach toward resolution enhancement because the term "super" in "super resolution" represents very well the characteristics of the technique overcoming the inherent resolution limitation of LR imaging systems. The major advantage of the signal processing approach is that it may cost less and the existing LR imaging systems can be still utilized. The SR image reconstruction is proved to be useful in many practical cases where multiple frames of the same scene can be obtained, including medical imaging, satellite imaging, and video applications. The goal of this article is to introduce the concept of SR algorithms to readers who are unfamiliar with this area and to provide a review for experts. To this purpose, we present the technical review of various existing SR methodologies which are often employed. Before presenting the review of existing SR algorithms, we first model the LR image acquisition process.

3,491 citations

Book
24 Oct 2001
TL;DR: Digital Watermarking covers the crucial research findings in the field and explains the principles underlying digital watermarking technologies, describes the requirements that have given rise to them, and discusses the diverse ends to which these technologies are being applied.
Abstract: Digital watermarking is a key ingredient to copyright protection. It provides a solution to illegal copying of digital material and has many other useful applications such as broadcast monitoring and the recording of electronic transactions. Now, for the first time, there is a book that focuses exclusively on this exciting technology. Digital Watermarking covers the crucial research findings in the field: it explains the principles underlying digital watermarking technologies, describes the requirements that have given rise to them, and discusses the diverse ends to which these technologies are being applied. As a result, additional groundwork is laid for future developments in this field, helping the reader understand and anticipate new approaches and applications.

2,849 citations