scispace - formally typeset
Search or ask a question
Author

A. Malczewski

Bio: A. Malczewski is an academic researcher from Raytheon. The author has contributed to research in topics: Insertion loss & Capacitive sensing. The author has an hindex of 11, co-authored 15 publications receiving 1247 citations.

Papers
More filters
Proceedings ArticleDOI
20 May 2001
TL;DR: In this paper, the first experimental characterization of dielectric charging within capacitive RF MEMS switches has been demonstrated and their lifetimes were measured using a dual-pulse waveform with 30 to 65 V of actuation voltage.
Abstract: The first experimental characterization of dielectric charging within capacitive RF MEMS switches has been demonstrated. Standard devices have been inserted into a time domain setup and their lifetimes have been characterized as a function of actuation voltage. Switch lifetimes were measured using a dual-pulse waveform with 30 to 65 V of actuation voltage. Resulting lifetimes were between 10/sup 4/ and 10/sup 8/ switch actuations, demonstrating an exponential relationship between lifetime and actuation voltage.

359 citations

Journal ArticleDOI
TL;DR: In this paper, a low-loss radio frequency (RF) microelectromechanical (MEMS) 4-bit X-band monolithic phase shifter is presented.
Abstract: In this work, development of a low-loss radio frequency (RF) microelectromechanical (MEMS) 4-bit X-band monolithic phase shifter is presented. These microstrip circuits are fabricated on 0.021-in-thick high-resistivity silicon and are based on a reflection topology using 3-dB Lange couplers. The average insertion loss of the circuit is 1.4 dB with the return loss >11 dB at 8 GHz. To the best of our knowledge, this is a lowest reported loss for X-band phase shifter and promises to greatly reduce the cost of designing and building phase arrays.

177 citations

Journal ArticleDOI
James Brank1, Jamie Yao1, Mike Eberly1, A. Malczewski1, Karl Varian1, Charles L. Goldsmith1 
TL;DR: In this paper, the basic operation of Raytheon's RF MEMS capacitive membrane switch is described, and an overview of the technique used to integrate the switch into a variable capacitor structure with sixteen capacitance states is provided.
Abstract: This paper overviews the application of RF MEMS switches in tunable filters as well as circuit developments for bandpass filters covering 110 MHz to 2.8 GHz. RF MEMS have several desirable features, including small size, low power requirements, and low loss. The basic operation of Raytheon's RF MEMS capacitive membrane switch is described. An overview of the technique used to integrate the switch into a variable capacitor structure with sixteen capacitance states is provided. Variable capacitor structures are used to construct multipole lumped bandpass filter designs, each with sixteen states. Finally, measured data from two representative five- and six-pole bandpass filters are presented. Characterization data demonstrates that the insertion loss for the five-pole filter using on-chip inductors was between 6.6 and 7.3 dB, and between 3.7 and 4.2 dB for the six-pole filter using off-chip inductors. © 2001 John Wiley & Sons, Inc. Int J RF and Microwave CAE11: 276-284, 2001.

148 citations

Journal ArticleDOI
TL;DR: In this article, a planar dynamically reconfigurable double-stub tuners that utilize electrostatically activated microelectromechanical system (MEMS) switches are presented. But their performance is limited by the range of loads that need to be matched.
Abstract: This paper presents novel planar dynamically reconfigurable double-stub tuners that utilize electrostatically activated microelectromechanical system (MEMS) switches. The tuners operate in the 10-20 GHz frequency range and have stubs that consist of a digital capacitor bank. Each bank has a predetermined number of capacitors that can be selected through the activation of appropriate MEMS switches. The value and number of capacitors is dictated by the range of loads that needs to be matched. Simulated and measured results from several designs are presented. A 4 bit /spl times/ 4 bit tuner that can match loads with 1.5 /spl Omega/

146 citations

Journal ArticleDOI
TL;DR: In this article, an RF MEMs microelectromechanical system variable capacitor has been demonstrated with a 22:1 tuning range, tuning from 1.5 to 33.2 pF of capacitance.
Abstract: () ABSTRACT: An RF MEMs microelectromechanical system variable capacitor has been demonstrated with a 22:1 tuning range, tuning from 1.5 to 33.2 pF of capacitance. This capacitor was constructed using bistable MEMs membrane capacitors with individual tuning ranges of 70:1 to 100:1, control voltages in the 30-55 V range, switching speeds less than 10 mS, and operating frequencies as high as 40 GHz. These devices may eventually provide a viable alternative to electronic varactors with improved tuning range and lower loss. Q 1999 John Wiley & Sons, Inc. Int J RF and Microwave CAE 9: 362)374, 1999.

146 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors concentrate on electrostatic switches at 0.1-100 GHz with high reliability (100 million to 10 billion cycles) and wafer-scale manufacturing techniques.
Abstract: MEMS switches are devices that use mechanical movement to achieve a short circuit or an open circuit in the RF transmission line. RF MEMS switches are the specific micromechanical switches that are designed to operate at RF-to-millimeter-wave frequencies (0.1 to 100 GHz). The forces required for the mechanical movement can be obtained using electrostatic, magnetostatic, piezoelectric, or thermal designs. To date, only electrostatic-type switches have been demonstrated at 0.1-100 GHz with high reliability (100 million to 10 billion cycles) and wafer-scale manufacturing techniques. It is for this reason that this article will concentrate on electrostatic switches.

1,066 citations

Journal ArticleDOI
TL;DR: The recent progress in MEMS for radio frequency (RF) applications from a device perspective is reviewed in this article, where switches and relays, tunable capacitors, integrated inductors, mechanical resonators and filters, and some representative microwave and millimetre-wave components are discussed.
Abstract: This paper reviews the recent progress in MEMS for radio frequency (RF) applications from a device perspective. RF MEMS devices reviewed include switches and relays, tunable capacitors, integrated inductors, mechanical resonators and filters, and some representative microwave and millimetre-wave components. Important device parameters are highlighted, as they have significant contributions to the performance of the final products in which the devices are used. The challenges and statuses of these RF MEMS devices are outlined and discussed. The intent of this topical review is to provide perspective to newcomers in the field, and empower potential end-users with an overall device picture, current status, and a vision of their ultimate performance capabilities.

552 citations

Journal ArticleDOI
01 Aug 1998
TL;DR: An overview of recent progress in the development of micromachined devices for use in wireless communication subsystems is presented in this article, where specific applications are reviewed for each of these components with emphasis on methods for miniaturization and performance enhancement of existing and further wireless transceivers.
Abstract: An overview of recent progress in the research and development of micromachined devices for use in wireless communication subsystems is presented. Among the specific devices described are tunable micromachined capacitors, integrated high-Q inductors, micromachined low-loss microwave and millimeter-wave filters, low-loss micromechanical switches, microscale vibrating mechanical resonators with Q's in the tens of thousands, and miniature antennas for millimeter-wave applications. Specific applications are reviewed for each of these components with emphasis on methods for miniaturization and performance enhancement of existing and further wireless transceivers.

481 citations

Journal ArticleDOI
TL;DR: In this paper, a reconfigurable rectangular spiral antenna with a set of micro electro mechanical system (MEMS) switches, which are monolithically integrated and packaged onto the same substrate, is presented.
Abstract: A fully integrated solution providing scan-beam capability with a single antenna is presented in this paper for the first time. The proposed system includes a reconfigurable rectangular spiral antenna with a set of micro electro mechanical system (MEMS) switches, which are monolithically integrated and packaged onto the same substrate. The system is based on a single-arm rectangular spiral antenna, capable of changing its radiation pattern using radio frequency-MEMS (RF-MEMS) switches. The rectangular spiral and RF-MEMS switches are monolithically integrated on a conventional microwave substrate printed circuit board (/spl epsiv//sub r/=3.27 and tan/spl delta/=0.004) and quartz substrate (/spl epsiv//sub r/=3.78 and tan/spl delta/=0.0002). The spiral is made out of multiple lines, which are interconnected by RF-MEMS switches strategically located along the spiral. On activating these switches, the spiral overall arm length is changed and consequently its radiation beam direction is changed. The two proposed antennas radiate right hand circular polarization (RHCP) and left hand circular polarization (LHCP) for printed circuit board and quartz substrate respectively. The gain of the two antennas varies between 3/spl sim/6 dBi. They both satisfy the 3-dB axial ratio criterion at their operating frequency band, i.e., at 10 GHz and 6 GHz for the printed circuit board and the quartz substrate respectively. To the best of our knowledge, this is the first truly reconfigurable printed antenna design using MEMS devices as active elements integrated in the same low loss substrate. The excellent performance of the proposed system emphasizes the importance of being able to integrate MEMS switches into the same low loss substrate for antenna applications. This technology pioneers the design of arbitrarily shaped reconfigurable antennas including the design of reconfigurable antenna arrays.

400 citations

Journal ArticleDOI
TL;DR: In this article, a closed-form expression for the pull-in voltage of fixed-fixed beams and fixed-free beams is derived starting from the known expression of a simple lumped spring-mass system.
Abstract: In this paper, a closed-form expression for the pull-in voltage of fixed–fixed beams and fixed–free beams is derived starting from the known expression of a simple lumped spring-mass system. The effects of partial electrode configuration, of axial stress, non-linear stiffening, charge re-distribution and fringing fields are all included in the final expression. Further, the results obtained are summarized and validated with other existing empirical and analytical models as well as with finite element simulation results. The model agrees well with finite element simulation results obtained with COVENTORWARE software.

398 citations