scispace - formally typeset
Search or ask a question
Author

A. Malinowski

Bio: A. Malinowski is an academic researcher from Harvard University. The author has contributed to research in topics: Particle & Relative humidity. The author has an hindex of 1, co-authored 1 publications receiving 146 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the deliquescence and efflorescence relative humidity values of 6- to 60-nm NaCl particles were measured using a tandem nano-Differential Mobility Analyzer.
Abstract: The deliquescence and efflorescence relative humidity values of 6- to 60-nm NaCl particles were measured using a tandem nano-Differential Mobility Analyzer. The deliquescence relative humidity (DRH) increased when the dry particle mobility diameter decreased below approximately 40 nm. The efflorescence relative humidity (ERH) similarly increased. For example, the DRH and ERH of 6-nm particles were 87% and 53%, respectively, compared to 75% and 45% for particles larger than 40 nm. Power law fits describing the nanosize effect are: DRH(d m) = 213 d m −1.6+ 76 and ERH(d m) = 213 d m −1.65+ 44, which are calibrated for 6 < d m < 60 nm with less than 1% RH uncertainty and where d m is the dry particle mobility diameter (nm). Two independent methods were used to generate the aerosol particles, namely by vaporizing and condensing granular sodium chloride and by electrospraying a high-purity sodium chloride aqueous solution, to investigate possible effects of impurities on the results. The DRH and ERH values were...

161 citations


Cited by
More filters
Journal ArticleDOI
01 Jul 2008-Tellus B
TL;DR: In this article, the authors summarized the existing published H-TDMA results on the size-resolved submicrometre aerosol particle hygroscopic properties obtained from ground-based measurements at multiple marine, rural, urban and free tropospheric measurement sites.
Abstract: The hygroscopic properties play a vital role for the direct and indirect effects of aerosols on climate, as well as the health effects of particulate matter (PM) by modifying the deposition pattern of inhaled particles in the humid human respiratory tract. Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA) instruments have been used in field campaigns in various environments globally over the last 25 yr to determine the water uptake on submicrometre particles at subsaturated conditions. These investigations have yielded valuable and comprehensive information regarding the particle hygroscopic properties of the atmospheric aerosol, including state of mixing. These properties determine the equilibrium particle size at ambient relative humidities and have successfully been used to calculate the activation of particles at water vapour supersaturation. This paper summarizes the existing published H-TDMA results on the size-resolved submicrometre aerosol particle hygroscopic properties obtained from ground-based measurements at multiple marine, rural, urban and free tropospheric measurement sites. The data is classified into groups of hygroscopic growth indicating the external mixture, and providing clues to the sources and processes controlling the aerosol. An evaluation is given on how different chemical and physical properties affect the hygroscopic growth.

454 citations

Journal ArticleDOI
TL;DR: Some chemistry relevant to airborne particles and especially to reactions occurring on their surfaces, including sea salt chemistry, nitrate and nitrite ion photochemistry, organics on surfaces and heterogeneous reactions of oxides of nitrogen on proxies for airborne mineral dust and boundary layer surfaces are highlighted.
Abstract: While particles have significant deleterious impacts on human health, visibility and climate, quantitative understanding of their formation, composition and fates remains problematic. Indeed, in many cases, even qualitative understanding is lacking. One area of particular uncertainty is the nature of particle surfaces and how this determines interactions with gases in the atmosphere, including water, which is important for cloud formation and properties. The focus in this Perspective article is on some chemistry relevant to airborne particles and especially to reactions occurring on their surfaces. The intent is not to provide a comprehensive review, but rather to highlight a few selected examples of interface chemistry involving inorganic and organic species that may be important in the lower atmosphere. This includes sea salt chemistry, nitrate and nitrite ion photochemistry, organics on surfaces and heterogeneous reactions of oxides of nitrogen on proxies for airborne mineral dust and boundary layer surfaces. Emphasis is on the molecular level understanding that can only be gained by fully integrating experiment and theory to elucidate these complex systems.

233 citations

Journal ArticleDOI
TL;DR: It is demonstrated that phase can be a key regulator of the reactivity of atmospheric SOM particles and a mechanism of neutralization and co-condensation of acidic gas-phase species, consistent with a highly viscous semisolid upon which adsorption occurs.
Abstract: The interconversion of atmospheric organic particles among solid, semisolid, and liquid phases is of keen current scientific interest, especially for particles of secondary organic material (SOM). Herein, the influence of phase on ammonia uptake and subsequent particle-phase reactions was investigated for aerosol particles of adipic acid and α-pinene ozonolysis SOM. The nitrogen content of the particles was monitored by online mass spectrometry for increasing ammonia exposure. Solid and semisolid adipic acid particles were inert to the ammonia uptake for low RH ( 94%) induced a first-order deliquescence phase transition into aqueous particles. Solid particles exposed to supersaturated (RH > 100%) conditions and cycled back to high RH (> 94%), thereby becoming acidic metastable particles, underwent a gradual second-order transition upon ammonia exposure to form aqueous, partially neutralized particles. For α-pinene SOM, ammonia exposure at low RH increased the particle-phase ammonium content by a small amount. Mass spectrometric observations suggest a mechanism of neutralization and co-condensation of acidic gas-phase species, consistent with a highly viscous semisolid upon which adsorption occurs. At high RH the ammonium content increased greatly, indicative of rapid diffusion and absorption in a liquid environment. The mass spectra indicated the production of organonitrogen compounds, possibly by particle-phase reactive chemistry. The present results demonstrate that phase can be a key regulator of the reactivity of atmospheric SOM particles.

172 citations

Journal ArticleDOI
TL;DR: In this article, a hygroscopic tandem nano-differential mobility analyzer was used to demonstrate prompt deliquescence and efflorescence of ammonium sulfate particles having diameters from 6 to 60 nm.
Abstract: Literature reports have differed on the possibilities of discontinuous and continuous (i.e., prompt and nonprompt) deliquescence and efflorescence of aerosol particles in the nanosize regime. Experiments reported herein using a hygroscopic tandem nano-differential mobility analyzer demonstrate prompt deliquescence and efflorescence of ammonium sulfate particles having diameters from 6 to 60 nm. Apparent nonpromptness can be induced both by operation of the experimental apparatus and by interpretation of the measurements, even though the underlying phase transitions of individual particles remain prompt. No nanosize effect on the relative humidity values of deliquescence or efflorescence is observed for the studied size range. Smaller hygroscopic growth factors are, however, observed for the nanoparticles, in agreement with thermodynamic calculations that include the Kelvin effect. A slightly nonspherical shape for dry ammonium sulfate particles is inferred from their hygroscopically induced reconstruction between 5 and 30% relative humidity. Our results provide a further understanding of nanoparticle behavior, especially relevant to the growth rates of atmospheric nanoparticles.

155 citations

Journal ArticleDOI
TL;DR: Climate model results show that the RH in the region with chloride-bearing deposits on Mars often reaches the deliquescence points of all three salts, and the temperature reaches levels above their eutectic points seasonally, in the course of a martian year.
Abstract: Hygroscopic salts have been detected in soils in the northern latitudes of Mars, and widespread chloride-bearing evaporitic deposits have been detected in the southern highlands. The deliquescence of hygroscopic minerals such as chloride salts could provide a local and transient source of liquid water that would be available for microorganisms on the surface. This is known to occur in the Atacama Desert, where massive halite evaporites have become a habitat for photosynthetic and heterotrophic microorganisms that take advantage of the deliquescence of the salt at certain relative humidity (RH) levels. We modeled the climate conditions (RH and temperature) in a region on Mars with chloride-bearing evaporites, and modeled the evolution of the water activity (a(w)) of the deliquescence solutions of three possible chloride salts (sodium chloride, calcium chloride, and magnesium chloride) as a function of temperature. We also studied the water absorption properties of the same salts as a function of RH. Our climate model results show that the RH in the region with chloride-bearing deposits on Mars often reaches the deliquescence points of all three salts, and the temperature reaches levels above their eutectic points seasonally, in the course of a martian year. The a(w) of the deliquescence solutions increases with decreasing temperature due mainly to the precipitation of unstable phases, which removes ions from the solution. The deliquescence of sodium chloride results in transient solutions with a(w) compatible with growth of terrestrial microorganisms down to 252 K, whereas for calcium chloride and magnesium chloride it results in solutions with a(w) below the known limits for growth at all temperatures. However, taking the limits of a(w) used to define special regions on Mars, the deliquescence of calcium chloride deposits would allow for the propagation of terrestrial microorganisms at temperatures between 265 and 253 K, and for metabolic activity (no growth) at temperatures between 253 and 233 K.

130 citations