scispace - formally typeset
Search or ask a question
Author

A. Miahnahri

Other affiliations: Stanford University
Bio: A. Miahnahri is an academic researcher from SLAC National Accelerator Laboratory. The author has contributed to research in topics: Laser & Undulator. The author has an hindex of 16, co-authored 40 publications receiving 5093 citations. Previous affiliations of A. Miahnahri include Stanford University.

Papers
More filters
Journal ArticleDOI
TL;DR: The Linac Coherent Light Source free-electron laser has achieved coherent X-ray generation down to a wavelength of 1.2 A and at a brightness that is nearly ten orders of magnitude higher than conventional synchrotrons.
Abstract: The Linac Coherent Light Source free-electron laser has now achieved coherent X-ray generation down to a wavelength of 1.2 A and at a brightness that is nearly ten orders of magnitude higher than conventional synchrotrons. Researchers detail the first operation and beam characteristics of the system, which give hope for imaging at atomic spatial and temporal scales.

2,648 citations

Journal ArticleDOI
M. Marvin Seibert1, Tomas Ekeberg1, Filipe R. N. C. Maia1, Martin Svenda1, Jakob Andreasson1, Olof Jönsson1, Dusko Odic1, Bianca Iwan1, Andrea Rocker1, Daniel Westphal1, Max F. Hantke1, Daniel P. DePonte, Anton Barty, Joachim Schulz, Lars Gumprecht, Nicola Coppola, Andrew Aquila, Mengning Liang, Thomas A. White, Andrew V. Martin, Carl Caleman1, Stephan Stern2, Chantal Abergel3, Virginie Seltzer3, Jean-Michel Claverie3, Christoph Bostedt4, John D. Bozek4, Sébastien Boutet4, A. Miahnahri4, Marc Messerschmidt4, Jacek Krzywinski4, Garth J. Williams4, Keith O. Hodgson4, Michael J. Bogan4, Christina Y. Hampton4, Raymond G. Sierra4, D. Starodub4, Inger Andersson5, Sǎa Bajt, Miriam Barthelmess, John C. H. Spence6, Petra Fromme6, Uwe Weierstall6, Richard A. Kirian6, Mark S. Hunter6, R. Bruce Doak6, Stefano Marchesini7, Stefan P. Hau-Riege8, Matthias Frank8, Robert L. Shoeman9, Lukas Lomb9, Sascha W. Epp9, Robert Hartmann, Daniel Rolles9, Artem Rudenko9, Carlo Schmidt9, Lutz Foucar9, Nils Kimmel9, Peter Holl, Benedikt Rudek9, Benjamin Erk9, André Hömke9, Christian Reich, Daniel Pietschner9, Georg Weidenspointner9, Lothar Strüder9, Günter Hauser9, H. Gorke, Joachim Ullrich9, Ilme Schlichting9, Sven Herrmann9, Gerhard Schaller9, Florian Schopper9, Heike Soltau, Kai Uwe Kuhnel9, Robert Andritschke9, Claus Dieter Schröter9, Faton Krasniqi9, Mario Bott9, Sebastian Schorb10, Daniela Rupp10, M. Adolph10, Tais Gorkhover10, Helmut Hirsemann, Guillaume Potdevin, Heinz Graafsma, Björn Nilsson, Henry N. Chapman2, Janos Hajdu1 
03 Feb 2011-Nature
TL;DR: This work shows that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source.
Abstract: The start-up of the Linac Coherent Light Source (LCLS), the new femtosecond hard X-ray laser facility in Stanford, California, has brought high expectations of a new era for biological imaging. The intense, ultrashort X-ray pulses allow diffraction imaging of small structures before radiation damage occurs. Two papers in this issue of Nature present proof-of-concept experiments showing the LCLS in action. Chapman et al. tackle structure determination from nanocrystals of macromolecules that cannot be grown in large crystals. They obtain more than three million diffraction patterns from a stream of nanocrystals of the membrane protein photosystem I, and assemble a three-dimensional data set for this protein. Seibert et al. obtain images of a non-crystalline biological sample, mimivirus, by injecting a beam of cooled mimivirus particles into the X-ray beam. The start-up of the new femtosecond hard X-ray laser facility in Stanford, the Linac Coherent Light Source, has brought high expectations for a new era for biological imaging. The intense, ultrashort X-ray pulses allow diffraction imaging of small structures before radiation damage occurs. This new capability is tested for the problem of imaging a non-crystalline biological sample. Images of mimivirus are obtained, the largest known virus with a total diameter of about 0.75 micrometres, by injecting a beam of cooled mimivirus particles into the X-ray beam. The measurements indicate no damage during imaging and prove the concept of this imaging technique. X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions1,2,3,4. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma1. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval2. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source5. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.

838 citations

Journal ArticleDOI
26 Apr 2013-Science
TL;DR: This simultaneous XRD-XES study shows that the PS II crystals are intact during measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation-sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies.
Abstract: Intense femtosecond x-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous x-ray diffraction (XRD) and x-ray emission spectroscopy (XES) of microcrystals of photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD-XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation-sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies.

383 citations

Journal ArticleDOI
TL;DR: Very low-emittance measurements made at low bunch charge, and a few femtosecond bunch length produced by the LCLS bunch compressors, show the possibilities of generating hundreds of GW at 1.5 A x-ray wavelength and nearly a single longitudinally coherent spike at 2-fs duration.
Abstract: The Linac Coherent Light Source (LCLS) is an x-ray Free-Electron Laser (FEL) project presently in a commissioning phase at SLAC. We report here on very low emittance measurements made at low bunch charge, and a few femtosecond bunch length produced by the LCLS bunch compressors. Start-to-end simulations associated with these beam parameters show the possibilities of generating hundreds of GW at 1.5 {angstrom} x-ray wavelength and nearly a single longitudinally spike at 1.5 nm with 2-fs duration.

260 citations

Journal ArticleDOI
TL;DR: The generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source represents an improvement of over an order of magnitude in peak power over state-of-the-art two- Colour XFels.
Abstract: The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitude in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.

180 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Linac Coherent Light Source free-electron laser has achieved coherent X-ray generation down to a wavelength of 1.2 A and at a brightness that is nearly ten orders of magnitude higher than conventional synchrotrons.
Abstract: The Linac Coherent Light Source free-electron laser has now achieved coherent X-ray generation down to a wavelength of 1.2 A and at a brightness that is nearly ten orders of magnitude higher than conventional synchrotrons. Researchers detail the first operation and beam characteristics of the system, which give hope for imaging at atomic spatial and temporal scales.

2,648 citations

Journal ArticleDOI
Henry N. Chapman1, Petra Fromme2, Anton Barty, Thomas A. White, Richard A. Kirian2, Andrew Aquila, Mark S. Hunter2, Joachim Schulz, Daniel P. DePonte, Uwe Weierstall2, R. Bruce Doak2, Filipe R. N. C. Maia3, Andrew V. Martin, Ilme Schlichting4, Lukas Lomb4, Nicola Coppola5, Robert L. Shoeman4, Sascha W. Epp4, Robert Hartmann, Daniel Rolles4, Artem Rudenko4, Lutz Foucar4, Nils Kimmel4, Georg Weidenspointner4, Peter Holl, Mengning Liang, Miriam Barthelmess, Carl Caleman, Sébastien Boutet6, Michael J. Bogan6, Jacek Krzywinski6, Christoph Bostedt6, Saša Bajt, Lars Gumprecht, Benedikt Rudek4, Benjamin Erk4, Carlo Schmidt4, André Hömke4, Christian Reich, Daniel Pietschner4, Lothar Strüder4, Günter Hauser4, H. Gorke7, Joachim Ullrich4, Sven Herrmann4, Gerhard Schaller4, Florian Schopper4, Heike Soltau, Kai-Uwe Kühnel4, Marc Messerschmidt6, John D. Bozek6, Stefan P. Hau-Riege8, Matthias Frank8, Christina Y. Hampton6, Raymond G. Sierra6, Dmitri Starodub6, Garth J. Williams6, Janos Hajdu3, Nicusor Timneanu3, M. Marvin Seibert3, M. Marvin Seibert6, Jakob Andreasson3, Andrea Rocker3, Olof Jönsson3, Martin Svenda3, Stephan Stern, Karol Nass1, Robert Andritschke4, Claus Dieter Schröter4, Faton Krasniqi4, Mario Bott4, Kevin Schmidt2, Xiaoyu Wang2, Ingo Grotjohann2, James M. Holton9, Thomas R. M. Barends4, Richard Neutze10, Stefano Marchesini9, Raimund Fromme2, Sebastian Schorb11, Daniela Rupp11, M. Adolph11, Tais Gorkhover11, Inger Andersson12, Helmut Hirsemann, Guillaume Potdevin, Heinz Graafsma, Björn Nilsson, John C. H. Spence2 
03 Feb 2011-Nature
TL;DR: This work offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage, by using pulses briefer than the timescale of most damage processes.
Abstract: X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded(1-3). It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source(4). We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes(5). More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (similar to 200 nm to 2 mm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes(6). This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.

1,708 citations

Journal ArticleDOI
TL;DR: Providing a future energy supply that is secure and CO_2-neutral will require switching to nonfossil energy sources such as wind, solar, nuclear, and geothermal energy and developing methods for transforming the energy produced by these new sources into forms that can be stored, transported, and used upon demand.
Abstract: Two major energy-related problems confront the world in the next 50 years. First, increased worldwide competition for gradually depleting fossil fuel reserves (derived from past photosynthesis) will lead to higher costs, both monetarily and politically. Second, atmospheric CO_2 levels are at their highest recorded level since records began. Further increases are predicted to produce large and uncontrollable impacts on the world climate. These projected impacts extend beyond climate to ocean acidification, because the ocean is a major sink for atmospheric CO2.1 Providing a future energy supply that is secure and CO_2-neutral will require switching to nonfossil energy sources such as wind, solar, nuclear, and geothermal energy and developing methods for transforming the energy produced by these new sources into forms that can be stored, transported, and used upon demand.

1,651 citations

Journal ArticleDOI
TL;DR: In this paper, the SPring-8 Angstrom Compact Free-Electron Laser (CFEL) was used for sub-angstrom fundamental-wavelength lasing at the Tokyo National Museum.
Abstract: Researchers report sub-angstrom fundamental-wavelength lasing at the SPring-8 Angstrom Compact Free-Electron Laser in Japan. The output has a maximum power of more than 10 GW, a pulse duration of 10−14 s and a lasing wavelength of 0.634 A.

1,467 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent investigations on high-energy processes within the realm of relativistic quantum dynamics, quantum electrodynamics, and nuclear and particle physics, occurring in extremely intense laser fields is presented.
Abstract: The field of laser-matter interaction traditionally deals with the response of atoms, molecules, and plasmas to an external light wave. However, the recent sustained technological progress is opening up the possibility of employing intense laser radiation to trigger or substantially influence physical processes beyond atomic-physics energy scales. Available optical laser intensities exceeding ${10}^{22}\text{ }\text{ }\mathrm{W}/{\mathrm{cm}}^{2}$ can push the fundamental light-electron interaction to the extreme limit where radiation-reaction effects dominate the electron dynamics, can shed light on the structure of the quantum vacuum, and can trigger the creation of particles such as electrons, muons, and pions and their corresponding antiparticles. Also, novel sources of intense coherent high-energy photons and laser-based particle colliders can pave the way to nuclear quantum optics and may even allow for the potential discovery of new particles beyond the standard model. These are the main topics of this article, which is devoted to a review of recent investigations on high-energy processes within the realm of relativistic quantum dynamics, quantum electrodynamics, and nuclear and particle physics, occurring in extremely intense laser fields.

1,394 citations