scispace - formally typeset
Search or ask a question
Author

A. Ong

Bio: A. Ong is an academic researcher from Curtin University. The author has contributed to research in topics: Cutting fluid & Machining. The author has an hindex of 1, co-authored 1 publications receiving 106 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors have reviewed the current state of the art in MQL with a particular focus on drilling, turning, milling and grinding machining operations and concluded that MQL has huge potential as a substitute for conventional flood cooling.
Abstract: Government legislation and public opinion are the main drivers behind the movement of manufacturing companies towards sustainable production. Fundamentally, companies want to avoid future financial penalties and the industry is therefore under pressure to adapt new techniques and practices in order to become environmentally friendly. The cost efficiency of metal cutting operations is highly dependent on accuracy, excellent surface finish and minimized tool wear and, to this end, has traditionally made abundant use of cutting fluid in machining operations. However, these cutting fluids have been a major contributor to environmental and health issues. In recent years, an enormous effort to eradicate these adverse effects has been made with one important focus being the implementation of minimum quantity lubrication (MQL). In the present work, the authors have reviewed the current state of the art in MQL with a particular focus on drilling, turning, milling and grinding machining operations. Overall, it is concluded that MQL has huge potential as a substitute for conventional flood cooling.

155 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a summary of the previously published research articles on minimum quantity lubrication (MQL) assisted machining and explore the benefits of the vegetable oil and nanofluid as a lubricant.
Abstract: In modern days, the conception of sustainability has progressively advanced and has begun receiving global interest. Thus, sustainability is an imperative idea in modern research. Considering the recent trend, this review paper presents a summary of the previously published research articles on minimum quantity lubrication (MQL) assisted machining. The requirement to stir towards sustainability motivated the researchers to revise the effects of substitute lubrication methods on the machining. Conventional lubri-cooling agents are still extensively employed when machining of engineering alloys, but the majority of the recent papers have depicted that the utilization of vegetable oil, nanofluids, and nanoplatelets in MQL system confers superior machining performances as compared to conventional lubrication technology. In actual, the definite principle of this manuscript is to re-examine modern advancements in the MQL technique and also explore the benefits of the vegetable oil and nanofluid as a lubricant. In brief, this paper is a testimony to the advancing capabilities of eco-friendly MQL technique which is a viable alternative to the flood lubrication technology, and the outcomes of this review work can be contemplated as a movement towards sustainable machining.

166 citations

Journal ArticleDOI
TL;DR: In this paper, the synergistic effect of multiangle 2D ultrasonic and minimum quantity lubrication (NMQL) was investigated in zirconia ceramic grinding. And the results reveal that the adhesion and material peeling phenomenon on the workpiece surface is reduced compared with dry grinding without ultrasonic vibration.
Abstract: Nanofluid minimum quantity lubrication (NMQL) technique has many technological and economic advantages in grinding operation. NMQL can improve grinding performance in terms of cooling and lubrication and is ecofriendly because it consumes a small amount of grinding fluid. Ultrasonic machining can improve grinding performance owing to its reciprocating vibration mechanism and furrow widening. Consequently, the simultaneous utilization of these techniques is anticipated to improve the surface quality, especially for hard brittle materials. In this research, multiangle two-dimensional (2D) ultrasonic vibration is utilized in zirconia ceramic grinding. Results reveal that the adhesion and material peeling phenomenon on the workpiece surface is obviously reduced compared with dry grinding without ultrasonic vibration. The synergistic effect of multiangle 2D ultrasonic and NMQL is also studied. With increased angle, the roughness value is found to initially increase (from 45° to 90°) and then decreases (from 90° to 135°). Moreover, the lubricating effect under 90° is the poorest, with the highest Ra and RSm values of 0.703 μm and 0.106 mm, respectively; conversely, the minimum Ra value (0.585 μm) is obtained under 45°, and the lowest RSm value (0.076 mm) is obtained under 135°.

106 citations

Journal ArticleDOI
TL;DR: In this article, the influence of pure cooling-lubrication (C/L) agents to reduce friction at faying surfaces can ameliorate overall machinability.
Abstract: In machining of soft alloys, the sticky nature of localized material instigated by tool-work interaction exacerbates the tribological attitude and ultimately demeans it machinability. Moreover, the endured severe plastic deformation and originated thermal state alter the metallurgical structure of machined surface and chips. Also, the used tool edges are worn/damaged. Implementation of cooling-lubrication (C/L) agents to reduce friction at faying surfaces can ameliorate overall machinability. That is why, this paper deliberately discussed the influence of pure C/L methods, i.e., such as dry cutting (DC) and nitrogen cooling (N2), as well as hybrid C/L strategies, i.e., nitrogen minimum quantity lubrication (N2MQL) and Ranque–Hilsch vortex tube (RHVT) N2MQL conditions in turning of Al 7075-T6 alloy, respectively. With respect to the variation of cutting speed and feed rate, at different C/Ls, the surface roughness, tool wear, and chips are studied by using SEM and 3D topographic analysis. The mechanism of heat transfer by the cooling methods has been discussed too. Furthermore, the new chip management model (CMM) was developed under all C/L conditions by considering the waste management aspects. It was found that the R-N2MQL has the potential to reduce the surface roughness up to 77% and the tool wear up to 118%. This significant improvement promotes sustainability in machining industry by saving resources. Moreover, the CMM showed that R-N2MQL is more attractive for cleaner manufacturing system due to a higher recyclability, remanufacturing, and lower disposal of chips.

106 citations

Journal ArticleDOI
TL;DR: In order to verify the interfacial lubrication characteristics of different vegetable oils, MQL milling experiments of AISI 1045 based on five vegetable oils (cottonseed, palm, castor, soybean, and peanut oils) were carried out as discussed by the authors.
Abstract: Minimum quantity lubrication (MQL) is an emerging green and resource-saving machining technique jetting minute amount lubricants and gas after mixing and atomization. However, MQL development is restricted to mineral oils because of its undegradability and threat to the environment and human health. Vegetable oils can replace mineral oils as base oil for MQL benefitting from its biodegradability and renewable property. Nevertheless, the lubrication mechanism at the tool-workpiece interface of different vegetable oils with various physicochemical properties has not been revealed systematically. In order to verify the interfacial lubrication characteristics of different vegetable oils, MQL milling experiments of AISI 1045 based on five vegetable oils (cottonseed, palm, castor, soybean, and peanut oils) were carried out. The experimental results showed that, palm oil obtained the lowest milling force (Fx = 312 N, Fy = 156 N), friction coefficient (0.78), and surface roughness values (Ra = 0.431 μm, RSm = 0.252 mm) and the smoothest surface of workpiece. Furthermore, the physiochemical properties (composition, molecular structure, viscosity, surface tension, and contact angle) of vegetable oil were analyzed. Palm oil with high content of saturated fatty acid, high viscosity and small contact angle can form the lubricating oil film with the highest strength and the largest spreading area at the tool-workpiece interface. Therefore, palm oil can achieve the optimal lubrication effect.

106 citations