scispace - formally typeset
Search or ask a question
Author

A. P. Alivisatos

Bio: A. P. Alivisatos is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Nanocrystal & Quantum dot. The author has an hindex of 26, co-authored 42 publications receiving 20709 citations. Previous affiliations of A. P. Alivisatos include University of Arkansas & University of Barcelona.

Papers
More filters
Journal ArticleDOI
02 Mar 2000-Nature
TL;DR: Control of the growth kinetics of the II–VI semiconductor cadmium selenide can be used to vary the shapes of the resulting particles from a nearly spherical morphology to a rod-like one, with aspect ratios as large as ten to one.
Abstract: Nanometre-size inorganic dots, tubes and wires exhibit a wide range of electrical and optical properties1,2 that depend sensitively on both size and shape3,4, and are of both fundamental and technological interest In contrast to the syntheses of zero-dimensional systems, existing preparations of one-dimensional systems often yield networks of tubes or rods which are difficult to separate5,6,7,8,9,10,11,12 And, in the case of optically active II–VI and III–V semiconductors, the resulting rod diameters are too large to exhibit quantum confinement effects6,8,9,10 Thus, except for some metal nanocrystals13, there are no methods of preparation that yield soluble and monodisperse particles that are quantum-confined in two of their dimensions For semiconductors, a benchmark preparation is the growth of nearly spherical II–VI and III–V nanocrystals by injection of precursor molecules into a hot surfactant14,15 Here we demonstrate that control of the growth kinetics of the II–VI semiconductor cadmium selenide can be used to vary the shapes of the resulting particles from a nearly spherical morphology to a rod-like one, with aspect ratios as large as ten to one This method should be useful, not only for testing theories of quantum confinement, but also for obtaining particles with spectroscopic properties that could prove advantageous in biological labelling experiments16,17 and as chromophores in light-emitting diodes18,19

4,288 citations

Journal ArticleDOI
04 Aug 1994-Nature
TL;DR: In this article, a hybrid organic/inorganic electroluminescent device was constructed based on the recombination of holes injected into a layer of semiconducting p-paraphenylene vinylene (PPV) with electrons injected into the multilayer film of cadmium selenide nanocrystals.
Abstract: ELECTROLUMINESCENT devices have been developed recently that are based on new materials such as porous silicon1 and semiconducting polymers2,3. By taking advantage of developments in the preparation and characterization of direct-gap semiconductor nanocrystals4–6, and of electroluminescent polymers7, we have now constructed a hybrid organic/inorganic electroluminescent device. Light emission arises from the recombination of holes injected into a layer of semiconducting p-paraphenylene vinylene (PPV)8–10 with electrons injected into a multilayer film of cadmium selenide nanocrystals. Close matching of the emitting layer of nanocrystals with the work function of the metal contact leads to an operating voltage11 of only 4V. At low voltages emission from the CdSe layer occurs. Because of the quantum size effect19–24 the colour of this emission can be varied from red to yellow by changing the nanocrystal size. At higher voltages green emission from the polymer layer predominates. Thus this device has a degree of voltage tunability of colour.

3,783 citations

Journal Article
TL;DR: In this article, a hybrid organic/inorganic electroluminescent device was constructed based on the recombination of holes injected into a layer of semiconducting p-paraphenylene vinylene (PPV) with electrons injected into the multilayer film of cadmium selenide nanocrystals.
Abstract: ELECTROLUMINESCENT devices have been developed recently that are based on new materials such as porous silicon' and semiconducting polymers 2,3 . By taking advantage of developments in the preparation and characterization of direct-gap semiconductor nanocrystals 4-6 , and of electroluminescent polymers7, we have now constructed a hybrid organic/inorganic electroluminescent device. Light emission arises from the recombination of holes injected into a layer of semiconducting p-paraphenylene vinylene (PPV) 2-10 with electrons injected into a multilayer film of cadmium selenide nanocrystals. Close matching of the emitting layer of nanocrystals with the work function of the metal contact leads to an operating voltage" of only 4 V. At low voltages emission from the CdSe layer occurs. Because of the quantum size effect 19-24 the colour of this emission can be varied from red to yellow by changing the nanocrystal size. At higher voltages green emission from the polymer layer predominates. Thus this device has a degree of voltage tunability of colour.

3,285 citations

Journal ArticleDOI
TL;DR: The synthesis of epitaxially grown, wurtzite CdSe/CdS core/shell nanocrystals is reported in this paper, where shells of up to three monolayers in thickness were grown on cores ranging in diameter from 23 to 39.
Abstract: The synthesis of epitaxially grown, wurtzite CdSe/CdS core/shell nanocrystals is reported Shells of up to three monolayers in thickness were grown on cores ranging in diameter from 23 to 39 A Shell growth was controllable to within a tenth of a monolayer and was consistently accompanied by a red shift of the absorption spectrum, an increase of the room temperature photoluminescence quantum yield (up to at least 50%), and an increase in the photostability Shell growth was shown to be uniform and epitaxial by the use of X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), and optical spectroscopy The experimental results indicate that in the excited state the hole is confined to the core and the electron is delocalized throughout the entire structure The photostability can be explained by the confinement of the hole, while the delocalization of the electron results in a degree of electronic accessibility that makes these nanocrystals

2,584 citations

Journal ArticleDOI
TL;DR: In this article, the surface composition of semiconductor nanocrystals was determined using X-ray photoelectron spectroscopy (XPS) and the core level peak positions for Cd and Se were in agreement with those of bulk CdSe.
Abstract: We report the use of X-ray photoelectron spectroscopy (XPS) to determine the surface composition of semiconductor nanocrystals. Crystalline, nearly monodisperse CdSe nanocrystals ranging in radius from 9 to 30 A were chemically synthesized and covalently bound to Au and Si surfaces for study. XPS core level peak positions for Cd and Se were in agreement with those of bulk CdSe. We have determined that the majority of Se atoms on the surface are unbonded as prepared and that Cd atoms are bonded to the surface ligand, tri-n-octylphosphine oxide, to the extent that such bonding is sterically allowed. We have determined that the total ligand saturation of the nanocrystal surface varies from 60% in the smaller nanocrystals to 30% in the larger nanocrystals. In addition, we have determined that upon exposure of the nanocrystals to air Se surface sites are oxidized, forming a SeO[sub 2] surface film which causes the nanocrystals to degrade over time. The nanocrystal surface can be modified by dispersing the crystals in pyridine. Nearly all of the P ligands are removed in this case, leaving behind primarily unsaturated Cd and Se surface atoms. In this case, both Cd and Se oxidize upon exposure to air. 35 refs.,more » 17 figs., 1 tab.« less

1,063 citations


Cited by
More filters
Journal ArticleDOI
16 Feb 1996-Science
TL;DR: In this article, the authors focus on the properties of quantum dots and their ability to join the dots into complex assemblies creates many opportunities for scientific discovery, such as the ability of joining the dots to complex assemblies.
Abstract: Current research into semiconductor clusters is focused on the properties of quantum dots-fragments of semiconductor consisting of hundreds to many thousands of atoms-with the bulk bonding geometry and with surface states eliminated by enclosure in a material that has a larger band gap. Quantum dots exhibit strongly size-dependent optical and electrical properties. The ability to join the dots into complex assemblies creates many opportunities for scientific discovery.

10,737 citations

Journal ArticleDOI
16 Nov 2001-Science
TL;DR: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron, which has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices.
Abstract: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron. Either adding the spin degree of freedom to conventional charge-based electronic devices or using the spin alone has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices. To successfully incorporate spins into existing semiconductor technology, one has to resolve technical issues such as efficient injection, transport, control and manipulation, and detection of spin polarization as well as spin-polarized currents. Recent advances in new materials engineering hold the promise of realizing spintronic devices in the near future. We review the current state of the spin-based devices, efforts in new materials fabrication, issues in spin transport, and optical spin manipulation.

9,917 citations

Journal ArticleDOI
TL;DR: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems as discussed by the authors, where the primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport.
Abstract: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.

9,158 citations

Journal ArticleDOI
TL;DR: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency as mentioned in this paper, and many DSC research groups have been established around the world.
Abstract: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency. DSC research groups have been established around the worl ...

8,707 citations

Journal ArticleDOI
25 Sep 1998-Science
TL;DR: Semiconductor nanocrystals prepared for use as fluorescent probes in biological staining and diagnostics have a narrow, tunable, symmetric emission spectrum and are photochemically stable.
Abstract: Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable. The advantages of the broad, continuous excitation spectrum were demonstrated in a dual-emission, single-excitation labeling experiment on mouse fibroblasts. These nanocrystal probes are thus complementary and in some cases may be superior to existing fluorophores.

8,542 citations