scispace - formally typeset
Search or ask a question
Author

A. P. G. Kieboom

Bio: A. P. G. Kieboom is an academic researcher. The author has contributed to research in topics: Anhydrous & Dimethylformamide. The author has an hindex of 1, co-authored 2 publications receiving 437 citations.


Cited by
More filters
Journal ArticleDOI
TL;DR: Dehydroisomerization of Limonene and Terpenes To Produce Cymene 2481 4.2.1.
Abstract: 3.2.3. Hydroformylation 2467 3.2.4. Dimerization 2468 3.2.5. Oxidative Cleavage and Ozonolysis 2469 3.2.6. Metathesis 2470 4. Terpenes 2472 4.1. Pinene 2472 4.1.1. Isomerization: R-Pinene 2472 4.1.2. Epoxidation of R-Pinene 2475 4.1.3. Isomerization of R-Pinene Oxide 2477 4.1.4. Hydration of R-Pinene: R-Terpineol 2478 4.1.5. Dehydroisomerization 2479 4.2. Limonene 2480 4.2.1. Isomerization 2480 4.2.2. Epoxidation: Limonene Oxide 2480 4.2.3. Isomerization of Limonene Oxide 2481 4.2.4. Dehydroisomerization of Limonene and Terpenes To Produce Cymene 2481

5,127 citations

Journal ArticleDOI
TL;DR: The types and sources of proteases, protease yield-improvement methods, the use of new methods for developing novel proteases and applications of alkaline proteases in industrial sectors are discussed, with an overview on the use in the detergent industry.
Abstract: Proteolytic enzymes are ubiquitous in occurrence, being found in all living organisms, and are essential for cell growth and differentiation. The extracellular proteases are of commercial value and find multiple applications in various industrial sectors. Although there are many microbial sources available for producing proteases, only a few are recognized as commercial producers. A good number of bacterial alkaline proteases are commercially available, such as subtilisin Carlsberg, subtilisin BPN′ and Savinase, with their major application as detergent enzymes. However, mutations have led to newer protease preparations with improved catalytic efficiency and better stability towards temperature, oxidizing agents and changing wash conditions. Many newer preparations, such as Durazym, Maxapem and Purafect, have been produced, using techniques of site-directed mutagenesis and/or random mutagenesis. Directed evolution has also paved the way to a great variety of subtilisin variants with better specificities and stability. Molecular imprinting through conditional lyophilization is coming up to match molecular approaches in protein engineering. There are many possibilities for modifying biocatalysts through molecular approaches. However, the search for microbial sources of novel alkaline proteases in natural diversity through the "metagenome" approach is targeting a hitherto undiscovered wealth of molecular diversity. This fascinating development will allow the biotechnological exploitation of uncultured microorganisms, which by far outnumber the species accessible by cultivation, regardless of the habitat. In this review, we discuss the types and sources of proteases, protease yield-improvement methods, the use of new methods for developing novel proteases and applications of alkaline proteases in industrial sectors, with an overview on the use of alkaline proteases in the detergent industry.

1,573 citations

Journal ArticleDOI
TL;DR: Roger Sheldon developed the concepts of E factors and atom utilization for assessing the environmental impact of chemical processes, particularly in relation to fine chemicals production.
Abstract: Roger Sheldon (1942) received a PhD in organic chemistry from the University of Leicester (UK) in 1967. This was followed by post-doctoral studies with Prof. Jay Kochi in the U.S. From 1969 to 1980 he was with Shell Research in Amsterdam and from 1980 to 1990 he was R&D Director of DSM Andeno. In 1991 he moved to his present position as Professor of organic chemistry and catalysis at the Delft University of Technology (The Netherlands). His primary research interests are in the application of catalytic methodologies—homogeneous, heterogeneous and enzymatic—in organic synthesis, particularly in relation to fine chemicals production. He developed the concepts of E factors and atom utilization for assessing the environmental impact of chemical processes.

1,567 citations

Journal ArticleDOI
TL;DR: It is concluded that the water required by enzymes in nonaqueous solvents provides them with sufficient conformational flexibility needed for catalysis.

890 citations