scispace - formally typeset
Search or ask a question
Author

A. Paganini-Hill

Bio: A. Paganini-Hill is an academic researcher. The author has contributed to research in topics: Dissociation (chemistry). The author has an hindex of 1, co-authored 1 publications receiving 2315 citations.

Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the state-of-the-art in isotherm modeling, its fundamental characteristics and mathematical derivations, as well as the key advance of the error functions, its utilization principles together with the comparisons of linearized and nonlinearized isotherms models have been highlighted and discussed.

5,914 citations

Journal ArticleDOI
TL;DR: The median-effect principle and its mass-action law based computer software are gaining increased applications in biomedical sciences, from how to effectively evaluate a single compound or entity to how to beneficially use multiple drugs or modalities in combination therapies.
Abstract: The median-effect equation derived from the mass-action law principle at equilibrium-steady state via mathematical induction and deduction for different reaction sequences and mechanisms and different types of inhibition has been shown to be the unified theory for the Michaelis-Menten equation, Hill equation, Henderson-Hasselbalch equation, and Scatchard equation. It is shown that dose and effect are interchangeable via defined parameters. This general equation for the single drug effect has been extended to the multiple drug effect equation for n drugs. These equations provide the theoretical basis for the combination index (CI)-isobologram equation that allows quantitative determination of drug interactions, where CI 1 indicate synergism, additive effect, and antagonism, respectively. Based on these algorithms, computer software has been developed to allow automated simulation of synergism and antagonism at all dose or effect levels. It displays the dose-effect curve, median-effect plot, combination index plot, isobologram, dose-reduction index plot, and polygonogram for in vitro or in vivo studies. This theoretical development, experimental design, and computerized data analysis have facilitated dose-effect analysis for single drug evaluation or carcinogen and radiation risk assessment, as well as for drug or other entity combinations in a vast field of disciplines of biomedical sciences. In this review, selected examples of applications are given, and step-by-step examples of experimental designs and real data analysis are also illustrated. The merging of the mass-action law principle with mathematical induction-deduction has been proven to be a unique and effective scientific method for general theory development. The median-effect principle and its mass-action law based computer software are gaining increased applications in biomedical sciences, from how to effectively evaluate a single compound or entity to how to beneficially use multiple drugs or modalities in combination therapies.

4,270 citations

Book ChapterDOI
TL;DR: The existence of NK cells has prompted a reinterpretation of both the studies of specific cytotoxicity against spontaneous human tumors and the theory of immune surveillance, at least in its most restrictive interpretation.
Abstract: Publisher Summary Studies of cytotoxicity by human lymphocytes revealed not only that both allogeneic and syngeneic tumor cells were lysed in a non-MHC-restricted fashion, but also that lymphocytes from normal donors were often cytotoxic. Lymphocytes from any healthy donor, as well as peripheral blood and spleen lymphocytes from several experimental animals, in the absence of known or deliberate sensitization, were found to be spontaneously cytotoxic in vitro for some normal fresh cells, most cultured cell lines, immature hematopoietic cells, and tumor cells. This type of nonadaptive, non-MHC-restricted cellmediated cytotoxicity was defined as “natural” cytotoxicity, and the effector cells mediating natural cytotoxicity were functionally defined as natural killer (NK) cells. The existence of NK cells has prompted a reinterpretation of both the studies of specific cytotoxicity against spontaneous human tumors and the theory of immune surveillance, at least in its most restrictive interpretation. Unlike cytotoxic T cells, NK cells cannot be demonstrated to have clonally distributed specificity, restriction for MHC products at the target cell surface, or immunological memory. NK cells cannot yet be formally assigned to a single lineage based on the definitive identification of a stem cell, a distinct anatomical location of maturation, or unique genotypic rearrangements.

2,982 citations

Journal ArticleDOI
TL;DR: The design of rational dosing regimens for clinical therapeutics cannot be performed with a knowledge of pharmacokinelics alone, and the linking of pharmacokinetics and pharmacodynamics to predict firstly the dose-concentration, and then the concentration-effect relationship is required.
Abstract: It is a major goal of clinical pharmacology to understand the dose-effect relationship in therapeutics. Much progress towards this goal has been made in the last 2 decades through the development of pharmacokinetics as a discipline. The study of pharmacokinetics seeks to explain the time course of drug concentration in the body. Recognition of the crucial concepts of clearance and volume of distribution has provided an important link to the physiological determinants of drug disposition. Mathematical models of absorption, distribution, metabolism and elimination have been extensively applied, and generally their predictions agree remarkably well with actual observations. However, the time course of drug concentration cannot in itself predict the time course or magnitude of drug effect. When drug concentrations at the effect site have reached equilibrium and the response is constant, the concentration-effect relationship is known as pharmacodynamics. Mathematical models of pharmacodynamics have been used widely by pharmacologists to describe drug effects on isolated tissues. The crucial concepts of pharmacodynamics are potency — reflecting the sensitivity of the organ or tissue to a drug, and efficacy — describing the maximum response. These concepts have been embodied in a simple mathematical expression, the Emax model, which provides a practical tool for predicting drug response analogous to the compartmental model in pharmacokinetics for predicting drug concentration.

1,103 citations

Book
28 Mar 2000
TL;DR: A comparison of species and living together and the effects of non-essential compounds and multivariate DEB models shows the need to consider the role of language in the acquisition and use of energy.
Abstract: The Dynamic Energy Budget theory unifies the commonalties between organisms, as prescribed by the implications of energetics, and links different levels of biological organisation (cells, organisms and populations). The theory presents simple mechanistic rules that describe the uptake and use of energy and nutrients and the consequences for physiological organization throughout an organism's life cycle. All living organisms are covered in a single quantitative framework, the predictions of which are tested against a variety of experimental results at a range of levels of organisation. The theory explains many general observations, such as the body size scaling relationships of certain physiological traits, and provides a theoretical underpinning to the method of indirect calorimetry. In each case, the theory is developed in elementary mathematical terms, but a more detailed discussion of the methodological aspects of mathematical modelling is also included.

985 citations